Supporting Information

Construction of efficient hole migration pathway on hematite for

efficient photoelectrochemical water oxidation

Feng Li, Jing Li, Lili Gao, Yiping Hu, Xuefeng Long, Shenqi Wei, Chenglong Wang, Jun Jin * and Jiantai Ma *

1. The equations

The conversion between potentials versus Ag/AgCl and versus RHE is determined using the equation below^[1].

$$E(\text{versus RHE}) = E(\text{versus Ag/AgCl}) + E_{\text{Ag/AgCl}}(\text{refer}) + 0.0591 \text{V} \times \text{pH}$$
$$E_{\text{Ag/AgCl}}(\text{refer}) = 0.197 \text{ V versus NHE at 25 °C}$$
(1)

Incident photon to current efficiency (IPCE) was obtained using an Oriel Cornerstone 260 1/4 m monochromator with a 500W Oriel Xe lamp as the simulated light source (LSH-X500B). An applied potential of 1.23 V vs. RHE was supplied by a miniature integrated electrochemical workstation (Zolix Instruments Co., Ltd). IPCE values were calculated using the equation below

$$IPCE(\%) = \frac{J \times 1240}{\lambda \times P_{light}} \times 100\%$$
(2)

J refers to the photocurrent density (mA cm⁻²) obtained from the electrochemical workstation. λ and P_{light} are the incident light wavelength (nm) and the power density obtained at a specific wavelength (mW cm⁻²), respectively.

Applied bias photon-to-current efficiency (ABPE) can be calculated using the following equation:

$$ABPE(\%) = \frac{J \times (1.23 - V_b)}{P_{light}} \times 100\%$$
(3)

J refers to the photocurrent density (mA cm⁻²) obtained from the electrochemical workstation. V_b is the applied bias vs. RHE (V), and P_{light} is the total light intensity of AM 1.5 G (100 mW cm⁻²).

The light absorption efficiency or light harvesting efficiencies (LHE, defined as the ratio of absorbed light to the incident light) of each photoanodes are calculated from their UV–Vis absorption spectra:

$$LHE = 1 - 10^{-A(\lambda)} \tag{4}$$

where $A(\lambda)$ is the absorbance at a specific wavelength. In order to calculate J_{abs} (the photocurrent density achievable assuming 100% absorbed photon-to-current conversion efficiency for photons) the solar spectral irradiance at AM 1.5G (W·m⁻²·nm⁻¹, ASTM G173-03) is first converted to solar photocurrents vs. wavelength (A·m⁻²·nm⁻¹) assuming 100% IPCE for photons. Then the solar photocurrents are multiplied by the LHE at each wavelength and adding these products up.

According to the M-S curves, charge carrier density (N_d) can be calculated using the following equation^[2]:

$$N_{d} = \frac{2}{e\varepsilon_{0}\varepsilon} \times \left[\frac{d\left[\frac{1}{C^{2}}\right]}{dV_{s}}\right]^{-1}$$
(5)

The electronic charge (e) is 1.6×10^{-19} C, vacuum permittivity (ϵ_0) is 8.854×10^{-14} F m⁻¹, and relative permittivity (ϵ) is 80 for hematite ^[3]. C (F cm⁻²) is the space charge

capacitance in the semiconductor (obtained from M-S curves), and V_s (V) is the applied potential for M-S curves.

the efficiency of charge transport in the bulk (η_{bulk} , relating to bulk charge separation) and surface charge transfer efficiency ($\eta_{surface}$, the yield of holes that are involved in water oxidation reaction after reaching the electrode/electrolyte interfaces) of the prepared photoanodes, can be calculated using the following equations:

$$\eta_{bulk} = \frac{J^{Na_2SO_3}}{J_{abs}}$$
(6)
$$\eta_{surface} = \frac{J^{H_2O}}{J^{Na_2SO_3}}$$
(7)

J _{abs} is the unity converted photocurrent density from the light absorption, while J^{H2O} and J^{Na2SO3} are the photocurrent densities obtained in 1 M KOH electrolyte and 1 M Na₂SO₃ (pH 9.5), respectively.

The electrochemically active surface area (ECSA) was estimated from the electrochemical double-layer capacitance according to a previous published report^[4]. Cyclic voltammograms were performed in 1 M KOH (pH = 13.6) at the scan rate of 20, 40, 60, 80, 100, 120, 140, 160, 180 and 200 mV s⁻¹ (Figure S7). Then the electrochemical active surface area was determined by measuring the capacitive current associated with double-layer charging from the scan-rate dependence of CVs. The double layer capacitance (C_{dl}) was estimated by plotting the $\Delta J = (J_a - J_c)$ at 1.05 V vs. RHE against the scan rate as shown in Figure 4a. The linear slope is equivalent to twice of the C_{dl}, which can be used to represent the electrochemical active surface area.

2. Figures

Scheme S1. Schematic diagram of the preparation procedure of the NiOOH-Fe₂O₃/F-

Fe₂O₃ NRs photoanode

Figure S1. Top-view SEM images of (a) F-Fe₂O₃, (b) Fe₂O₃/F-Fe₂O₃, (c) NiOOH-

 $Fe_2O_3/F-Fe_2O_3$ NRs and (d) cross-section SEM image of NiOOH-Fe_2O_3/F-Fe_2O_3 NRs.

Fe₂O₃ NRs, (b) NiOOH-Fe₂O₃/F-Fe₂O₃ NRs

Figure S3. HRTEM image of Fe₂O₃/F-Fe₂O₃.

Figure S4. XPS high resolution spectrum of (a) F 1s for F-Fe₂O₃ NRs and (b) Ni 2p,

(c) O 1s of NiOOH-Fe₂O₃/F-Fe₂O₃ NRs photoanode.

Figure S5. (a) LSVs and (b) Mott–Schottky plots of F-Fe₂O₃ with different content of

F precursor collected at a fixed frequency of 1 kHz.

Figure S6. (a) Photoluminescence (PL) spectra and (b) ABPE of each photoanodes.

Figure S7. Jabs values of (a) α -Fe₂O₃, (b) F-Fe₂O₃, (c) Fe₂O₃/F-Fe₂O₃, and (d)

NiOOH-Fe₂O₃/F-Fe₂O₃ NRs photoanodes (assuming 100% absorbed photon-to-

current conversion efficiency for photons).

Figure S8. (a) the IPCE enhancement factors and (b) Integrated photocurrent at 1.23

 V_{RHE} for $\alpha\mbox{-}Fe_2O_3,\mbox{-}Fe_2O_3,\mbox{-}Fe_2O_3\mbox{-}Fe_2O_3\mbox{-}and\mbox{-}NiOOH/Fe_2O_3/F-Fe_2O_3\mbox{-}NRs$

photoanode.

Figure S9. Voltammograms of the(a) α -Fe₂O₃, (b) F-Fe₂O₃, (c) Fe₂O₃/F-Fe₂O₃, and (d) NiOOH-Fe₂O₃/F-Fe₂O₃ NRs photoanodes at various scan rates (20-180 mV s⁻¹)

Figure S10. (a) LSVs of each photoanode collected at 5 mV s⁻¹ in a 1 M Na_2SO_3

aqueous electrolyte under one sun illumination (100 mW cm⁻²) and (b) photocurrent density vs. applied potential curves for each sample.

Figure S11. Energy band diagrams of (a) Fe₂O₃/F-Fe₂O₃ NRs and (b) F-Fe₂O₃/Fe₂O₃

NRs in solution.

Figure S12. (a) R_{Bulk} , (b) C_{Bulk} (c) $R_{ct, ss}$ and (d) C_{ss} based on the equivalent circuit at different potentials of the each photoanode.

Catalyst	The onset potential (V vs.RHE)	Current density at 1.23 V vs. RHE (mA cm ⁻²)	IPCE value (%)	Ref.
NiOOH/ Fe ₂ O ₃ / F- Fe ₂ O ₃	0.61	2.48	51 at 1.23V (300 nm)	THIS WORK
Fe ₂ O ₃ -TiO ₂ - 40,	1.0	~ 0.2	14 at 1.23V (375 nm)	<i>Angew. Chem. Int.</i> <i>Ed.</i> 2018 , DOI: 10.1002/anie.2018 08104
Fh/Ti-Fe ₂ O ₃	0.93	2.32	45 at 1.23V (320 nm)	<i>ChemSusChem</i> 2018 , DOI: 10.1002/cssc.2018 01406
FeFx-Fe ₂ O ₃ - Pt	~ 0.61	2.4	40 at 1.23V (350 nm)	<i>J. Mater. Chem. A,</i> 2018 , DOI: 10.1039/C8TA076 22G
Dual axial gradient- codoped (Zr and Sn) Fe ₂ O ₃ nanorod	~ 0.63	1.64	34 at 1.23V (410 nm)	<i>ChemSusChem</i> 2018, DOI: 10.1002/cssc.2018 01614
Fe ₂ O ₃ / F:FeOOH/ FeNiOOH	0.45	1.5	no	<i>ChemSusChem</i> 2018 DOI: 10.1002/cssc.2018 01751
Mg-Fe ₂ O ₃ /P- Fe ₂ O ₃	0.68	2.4	36 at 1.23V (300 nm)	J. Mater. Chem. A, 2018 , 6, 13412
NiO/P-a- Fe ₂ O ₃	0.69	2.08	38.6 at 1.23V (350 nm)	ChemSusChem 2018 , 11, 2156 – 2164
Fe ₂ O ₃ /Reasse mbled Carbon Nitride/CoPi	~0.65	0.7	32 at 1.23V (380 nm)	ACS Appl. Mater. Interfaces, 2018 , 10, 6424–6432
CoFeO _x on hematite	0.6	1.2	~20 at 1.23V (360 nm)	<i>Energy Environ.</i> <i>Sci.</i> , 2018 , DOI: 10.1039/C8EE013 46B
Fe _{1-x} Ni _x OOH	0.82	0.5	no	ACS Catal. 2018,

Table S1 Comparison of our photoanode to other $\alpha\mbox{-}Fe_2O_3\mbox{-}based$ photoanode

on α -Fe ₂ O ₃				8,2754-2759
Sn-doped dodecahedral α -Fe ₂ O ₃ on NFs/NiOOH	0.8	2.9	68 at 1.5V (360 nm)	<i>Nano Energy</i> 2018 , 50, 331–338
MnO ₂ /P: Fe ₂ O ₃	~ 0.8	1.65	11.42 at 1.23V (350 nm)	J. Mater. Chem. A, 2018, 6, 7021- 7026
Sn-D- NFs/FeOOH	0.75	2.4	66 at 1.23V (350 nm)	<i>Nano Energy</i> 2018 , 50, 331- 338.
grad- P:Fe ₂ O ₃ /Co- Pi	0.8	2.0	28 at 1.23V (300 nm)	Chem. Sci., 2017 , 8, 91–100
Zr-Fe ₂ O ₃ NT	~ 0.89	1.50	25.7 at 1.23V (370 nm)	Angew. Chem. Int. Ed. 2017 , 129, 1 – 7
Rh-F- Fe ₂ TiO ₅ / Fe ₂ O ₃	0.63	2.12	37 at 1.25V (370 nm)	ACS Catal. 2017 , 7, 4062–4069
C coated Fe ₂ O ₃	0.77	2.0	no	Appl. Catal. B- Environ., 2017 , 207, 1–8
C/Co ₃ O ₄ – Fe ₂ O ₃	0.77	1.48	28 at 1.23V (325 nm)	Angew. Chem. Int. Ed. 2016 , 55, 5851- 5855
Co-Pi-Fe ₂ O ₃	~ 0.8	1.28	no	J. Catal., 2017 , 350, 48–55
IrO_2/RuO_2 - Fe_2O_3	0.48	1.52	54 at at 1.25V (330 nm)	<i>Nano Energy</i> 2017 , 38, 218–231
E–I–Sn–Fe ₂ O ₃	~ 0.6	2.2	27 at 1.23V (330 nm)	Nano Lett., 2017 , 17, 2490–2495
Au-embedded α -Fe ₂ O ₃	0.8	1.025	16 at 1.23V (410 nm)	Chem.Commun., 2017 ,53, 4278- 4281
CoPi/TiO ₂ / Fe ₂ O ₃	0.55	~ 6.0	56 at 1.23V (300 nm)	Nano Energy 2017, 39, 211–218
FeOOH/ Fe ₂ O ₃	0.65	1.21	no	Angew. Chem. Int. Ed. 2016 , 55, 10854

Ru–Fe ₂ O ₃	0.71	5.7	82 at 1.23V (320 nm)	Nano Energy 2015, 16, 320–328
Mg-Fe ₂ O ₃ / Fe ₂ O ₃ film	0.8	~ 0.5	19 at 1.0 V (300 nm)	J. Am. Chem. Soc. 2012 , 134, 5508–5511

Reference

- J. Li, S. K. Cushing, P. Zheng, T. Senty, F. Meng, A. D. Bristow, A. Manivannan, N. Wu, J. Am. Chem. Soc., 2014, 136, 8438-8449.
- F. Wang, W. Septina, A. Chemseddine, F. F. Abdi, D. Friedrich, P. Bogdanoff, R. van de Krol, S. D. Tilley, S. P. Berglund, *J. Am. Chem. Soc.*, 2017. 139, 42, 15094-15103.
- [3] C. Li, A. Li, Z. Luo, J. Zhang, X. Chang, Z. Huang, T. Wang, J. Gong, *Angew. Chem. Int. Ed.* **2017**, *129*, 4214-4219.
- [4] W. Bian, Y. Huang, X. Xu, M. A. Ud Din, G. Xie, X. Wang, ACS Appl. Mater. Interfaces, 2018, 10, 9407-9414.