Supporting Information

Efficient ambient-air-stable HTM-free carbon-based perovskite solar cells with hybrid 2D-3D lead halide photoabsorber

Junshuai Zhou ^{ab}, Zhili Ye ^{ab}, Jie Hou ^{ab}, Jiaojiao Wu ^{ab}, Yan-Zhen Zheng *ac, Xia Tao *abc

^a Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China

* E-mail: taoxia@mail.buct.edu.cn; taoxia@yahoo.com

^b State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China

^c Research Center of the Ministry of Education for High Gravity Engineering &
 Technology, Beijing University of Chemical Technology, Beijing, 100029, China

Fig. S1 (a) Top view SEM image and (b) XRD pattern of fresh EA₂PbI₄ film.

Fig. S2 Photovoltaic characterization of $(EA)_2(MA)_{n-1}Pb_nI_{3n+1}$ films. (a) Absorption spectra of the $(EA)_2(MA)_{n-1}Pb_nI_{3n+1}$ films, (b) Band gap energy (Eg) of $(EA)_2(MA)_{n-1}Pb_nI_{3n+1}$ films corresponding to UV-Vis absorption spectra, and (c) Normalized steady-state PL spectra of $(EA)_2(MA)_{n-1}Pb_nI_{3n+1}$ films illuminated from the front side of the films on silica glass.

Fig. S3 Steady-state PL spectra of $(EA)_2(MA)_{n-1}Pb_nI_{3n+1}$ films illuminated from the front and back sides of the films on silica glass. (a) n = 6, (b) n = 10, (c) n = 20, and (d) $n = \infty$.

Fig. S4 (a, b) Cross-sectional SEM images of ITO/C₆₀/perovskite/C device.

Fig. S5 *J-V* curves of the champion C-PSCs with different 2D-3D hybrid perovskites (n = 6) measured with reverse scans.

Fig. S6 Electrochemical propertyies. (a) Nyquist plots of the C-PSCs with $(EA)_2(MA)_{n-1}Pb_nI_{3n+1}$ measured at 0.8 V in dark condition measured with frequency ranging from 10⁶ to 1 Hz, (b) the equivalent circuit model for C-PSCs in EIS, and (c) variation of R_{rec} under different bias voltages from 0 to 1.0 V.

Fig. S7 Steady-state PL spectra of $(EA)_2(MA)_{n-1}Pb_nI_{3n+1}$ films illuminated from the front side of the films on silica glass.

Fig. S8 Top view SEM images of $(EA)_2(MA)_{n-1}Pb_nI_{3n+1}$ films: (a) $n = \infty$, (b) n = 20, (c) n = 10, and (d) n = 6. Pin-holes are labeled in red circles.

Fig. S9 Zoomed-in XRD patterns of $(EA)_2(MA)_{n-1}Pb_nI_{3n+1}$ films on ITO substrate in the region of $7^\circ - 15^\circ$.

Table S1 Photovoltaic parameters of the best-performing C-PSCs with different 2D-	3D
hybrid perovskites $(n = 6)$ measured with reverse scans.	

Samples	$V_{\rm OC}$ (V)	$J_{ m SC}$ (mA cm ⁻²)	FF (%)	PCE (%)
$(EA)_2(MA)_5Pb_6I_{19}$	1.018	21.14	55.21	11.88
$(BA)_2(MA)_5Pb_6I_{19}$	1.025	19.26	53.38	10.54
$(PEA)_2(MA)_5Pb_6I_{19}$	1.031	18.21	50.40	9.46