# **Supporting Information**

## In Situ Derived Fe/N/S-Codoped Carbon Nanotubes from ZIF-8 Crystals as

### Efficient Electrocatalysts for Oxygen Reduction Reaction and Zinc-Air Batteries

Huihui Jin<sup>a</sup>, Huang Zhou<sup>a</sup>, Wenqiang Li<sup>a</sup>, Zhihao Wang<sup>a,b</sup>, Jinlong Yang<sup>a</sup>, Yuli Xiong<sup>c</sup>, Daping He<sup>a,b\*</sup>, Lei Chen<sup>a\*</sup>, Shichun Mu<sup>a\*</sup>

<sup>a</sup> State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,

Wuhan University of Technology, Wuhan 430070, China

<sup>b</sup> Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan

University of Technology, Wuhan 430070, China

<sup>c</sup> Michael Grätzel Center for Mesoscopic Solar Cells (MGC), Wuhan National Laboratory for

Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science

and Technology, Wuhan 430074, China

E-mail: <u>hedaping@whut.edu.cn</u>, <u>CHL0583@163.com</u>, <u>msc@whut.edu.cn</u>

RDE and RRDE technique

In RDE testing, the electron transfer number was calculated by Koutecky-Levich equation:

$$\frac{1}{j} = \frac{1}{j_L} + \frac{1}{j_K} = \frac{1}{B\omega^{1/2}} + \frac{1}{j_K}$$
$$B = 0.62nFC_0 D^{2/3} v^{-1/6}$$

Where j is the measured current density,  $j_K$  is the kinetic current density,  $j_L$  is the limiting current density,  $\omega$  is the angular velocity of the electrode rotation, n is the electron transfer number, F is the Faraday constant (96485 C/mol), C<sub>0</sub> is the bulk concentration of O<sub>2</sub> (1.2 × 10<sup>-6</sup> mol/cm<sup>3</sup> for 0.1 M KOH, 1.1 × 10<sup>-6</sup> mol/cm<sup>3</sup> for 0.5 M H<sub>2</sub>SO<sub>4</sub>), D is the diffusion coefficient of O<sub>2</sub> (1.9 × 10<sup>-5</sup> cm<sup>2</sup>/s<sup>1</sup> in 0.1 M KOH, 1.8 × 10<sup>-5</sup> cm<sup>2</sup>/s<sup>1</sup> in 0.5 M H<sub>2</sub>SO<sub>4</sub>), and v is the kinematic viscosity of the electrolyte (0.01 cm<sup>2</sup>/ s<sup>1</sup> for both 0.1 M KOH and 0.5 M H<sub>2</sub>SO<sub>4</sub> solution). In RDDE testing, the electron transfer number and H<sub>2</sub>O<sub>2</sub>% yield were calculated by the following equation:

$$n = \frac{4I_d}{I_d + \frac{I_r}{N}}$$
$$H_2O_2\% = 200 \times \frac{\frac{I_r}{N}}{\frac{I_r}{N} + I_d}$$

Where the  $I_d$  is the disk current,  $I_r$  is the ring current, N=0.37

#### **DFT Computation Details**

Geometric optimization and total energy calculations were performed within DFT framework as implemented with DMol3 code. Spin-polarization was considered in all calculations. PBE exchange-correlation functional within the generalized gradient approximation (GGA) was adopted. The all-electron-relativistic-core method was implemented to treat the relativistic effects. A double numerical basis set was used together with polarization functions (DNP). A smearing of 0.005 Ha (1 Ha = 27.21 eV) to the orbital occupation is applied to achieve accurate electronic convergence. Self-consistent-field (SCF) procedures were performed with a convergence criterion of 1×10<sup>-6</sup> Ha on the total energy. The convergence tolerance of energy, force and displacement were 0.002 Ha/Å, 1×10<sup>-5</sup> Ha, and 0.005 Å respectively in the geometry optimization .Periodical supercells containing single-layer graphenes with 20 Å vacuum above were used to model various graphene doping structures.The 4×4×1 Monkhorst–Pack grid k-points were employed to sample the Brillouin zone integration.

**Supplementary Figures and Tables** 



Figure S1 SEM images of (a) ZIF-8, (b) Fe/N/S-C and (c) N-C.



Figure S2 TEM image of (a) Fe/N/S-CNTs and (b) Fe/N/S-C.



Figure S3 TEM image of Fe/N/S-CNTs before acid etching.



Figure S4 FTIR spectra of precursors before (H-Fe/ZIF-8, Fe/ZIF-8 and FeSO<sub>4</sub>) and after pyrolysis



(Fe/N/S-C and Fe/N/S-CNTs).

Figure S5 XRD patterns of (a) precursors before pyrolysis, (b) carbides after pyrolysis.



Figure S6 Raman spectra of N-C, Fe/N/S-C and Fe/N/S-CNTs.



Figure S7 CV curves of Fe/N/S-CNTs in 0.1 M KOH.



Figure S8 LSV curves of Fe/N/S-CNTs at various rotation rates in 0.1 M KOH (inset:





Figure S9 Tafel slopes of N-C, Fe/N/S-C, Fe/N/S-CNTs and Pt/C in 0.1 M KOH.



Figrue S10 SEM images of (a) Fe/N/S-CNTs-3 mL and (b) Fe/N/S-CNTs-9 mL



Figrue S11 N1s XPS spectra of (a) Fe/N/S-CNTs-3 mL and (b) Fe/N/S-CNTs-9 mL



Figure S12 LSV curves of the pyrolysis samples with different amount of hydrazine hydrate

pretreatment.



Figure S13 XRD pattern of Fe/N/S-CNTs before acid treatment.



Figure S14 LSV curves of Fe/N/S-CNTs before and after acid treatment and SCN<sup>-</sup> poisoning.



Figure S15 LSV curves of the pyrolysis samples with different iron sources.







Figure S17 LSV curves of Fe/N/S-CNTs at various rotation rates in 0.5 M H<sub>2</sub>SO<sub>4</sub> (inset:

1.5

corresponding Koutecky–Levich plots).



Figure S18 Open-circuit potential of Fe/N/S-CNTs and Pt/C.

Table S1. Elements content of Fe/N/S-C and Fe/N/S-CNTs from element analyzer and ICP, and superficial surface atomic content from XPS peak table.

| catalyst    | С      | Ν      | S      | Fe     | Surface N  | Surface Fe |
|-------------|--------|--------|--------|--------|------------|------------|
|             | (wt %) | (wt %) | (wt %) | (wt %) | (Atomic %) | (Atomic %) |
| Fe/N/S-C    | 67.67  | 5.63   | 0.808  | 1.59   | 3.01       | 0.51       |
| Fe/N/S-CNTs | 68.8   | 5.34   | 1.051  | 1.43   | 6.21       | 0.59       |

Table S2. Comparison of the onset and half-wave potentials for ORR of non-noble metal

catalysts systems from literature and this work in alkaline and acid medium

| Catalyst           | Electrolyte | E <sub>1/2</sub> | Electrolyte                         | E <sub>1/2</sub> | Reference |
|--------------------|-------------|------------------|-------------------------------------|------------------|-----------|
|                    |             | vs RHE           |                                     | vs RHE           |           |
| Fe/N/S-CNTs        | 0.1М КОН    | 0.887            | 0.5M H <sub>2</sub> SO <sub>4</sub> | 0.767            | This work |
| NCNTs-2.5          | 0.1М КОН    | 0.789            | 0.5M H <sub>2</sub> SO <sub>4</sub> |                  | 1         |
| Fe@Fe₃C/C-N        | 0.1М КОН    | 0.75             | 0.5M H <sub>2</sub> SO <sub>4</sub> | 0.62             | 2         |
| SN-CNTs            | 0.1М КОН    | 0.79             | 0.1M HClO <sub>4</sub>              | 0.56             | 3         |
| Fe <sub>3</sub> /C | 0.1M KOH    | 0.83             | 0.5M H <sub>2</sub> SO <sub>4</sub> | 0.73             | 4         |
| CoP-CMP800         | 0.1M KOH    | 0.82             | 0.5M H <sub>2</sub> SO <sub>4</sub> | 0.64             | 5         |
| PCN-FeCo/C         | 0.1M KOH    | 0.85             | 0.5M H <sub>2</sub> SO <sub>4</sub> | 0.76             | 6         |
| BCNFNHs            | 0.1M KOH    | 0.861            | 0.5M H <sub>2</sub> SO <sub>4</sub> | 0.65             | 7         |
| NFe/CNs            | 0.1M KOH    | 0.859            | 0.5M H <sub>2</sub> SO <sub>4</sub> |                  | 8         |
| 5%Fe-N/C           | 0.1M KOH    |                  | 0.5M H <sub>2</sub> SO <sub>4</sub> | 0.735            | 9         |
| MSZIF-900          | 0.1М КОН    | 0.84             | 0.5M H <sub>2</sub> SO <sub>4</sub> | 0.72             | 10        |

#### References

- 1 P. Su, H. Xiao, J. Zhao, Y. Yao, Z. Shao, C. Li, Q. Yang, Chem. Sci, **2013,**4, 2941-2946.
- 2 K. Ai, Y. Liu, C. Ruan, L. Lu, G.M. Lu, Adv. Mater, **2013**, 25,998-1003.
- 3 Q. Shi, F. Peng, S. Liao, H. Wang, H. Yu, Z. Liu, B. Zhang, D. Su, J. Mater. Chem. A, **2013**, 1, 14853-14857.
- Y. Hu, J. Jensen, W. Zhang, L. Cleemann, W. Xing, N. Bjerrum, Q. Li, Angew. Chem. Int. Ed,
  2014, 53, 3749-3749.
- 5 Z.S. Wu, L. Chen, J. Liu, K. Parvez, H. Liang, J. Shu, H. Sachdev, R. Graf, X. Feng, K. Müllen, Adv. Mater, **2014**, 26, 1450-1455.

- 6 Q. Lin, X. Bu, A. Kong, C. Mao, F. Bu, P. Feng, Adv. Mater, **2015**, 27, 3431-3436.
- 7 W. Yang, X. Liu, X. Yue, J. Jia, S. Guo, J. Am. Chem. Soc, **2015**, 137, 1436.
- 8 S. Li, C. Cheng, H. Liang, X. Feng, A. Thomas, Adv. Mater, **2017**, 1700707.
- 9 Q. Lai, L. Zheng, Y. Liang, J. He, J. Zhao, J. Chen, ACS Catal, **2017**, 7, 1655-1663.
- G. Jia, W. Zhang, G. Fan, Z. Li, D. Fu, W. Hao, C. Yuan, Z. Zou, Angew. Chem. Int. Ed, 2017, 56, 13781-13785.