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In RDE testing, the electron transfer number was calculated by Koutecky-Levich equation:
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Where  is the measured current density,  is the kinetic current density, is the limiting 𝑗 𝑗𝐾 𝑗𝐿 

current density, ω is the angular velocity of the electrode rotation, n is the electron transfer 

number, F is the Faraday constant (96485 C/mol), C0 is the bulk concentration of O2 (1.2 10-6 ×

mol/cm3 for 0.1 M KOH, 1.1 10-6 mol/cm3 for 0.5 M H2SO4), D is the diffusion coefficient of O2 ×

(1.9 10-5 cm2/s1 in 0.1 M KOH, 1.8 10-5 cm2/s1 in 0.5 M H2SO4), and ν is the kinematic × ×

viscosity of the electrolyte (0.01 cm2/ s1 for both 0.1 M KOH and 0.5 M H2SO4 solution).

In RDDE testing, the electron transfer number and H2O2% yield were calculated by the following 

equation:
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Where the  is the disk current, is the ring current, N=0.37𝐼𝑑 𝐼𝑟 

DFT Computation Details 

Geometric optimization and total energy calculations were performed within DFT framework as 

implemented with DMol3 code. Spin-polarization was considered in all calculations. PBE 

exchange-correlation functional within the generalized gradient approximation (GGA) was 
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adopted. The all-electron-relativistic-core method was implemented to treat the relativistic 

effects. A double numerical basis set was used together with polarization functions (DNP). A 

smearing of 0.005 Ha (1 Ha = 27.21 eV) to the orbital occupation is applied to achieve accurate 

electronic convergence. Self-consistent-field (SCF) procedures were performed with a 

convergence criterion of 1×10-6 Ha on the total energy. The convergence tolerance of energy, 

force and displacement were 0.002 Ha/Å, 1×10-5 Ha, and 0.005 Å respectively in the geometry 

optimization .Periodical supercells containing single-layer graphenes with 20 Å vacuum above 

were used to model various graphene doping structures.The 4×4×1 Monkhorst–Pack grid k-

points were employed to sample the Brillouin zone integration.
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Supplementary Figures and Tables

Figure S1 SEM images of (a) ZIF-8, (b) Fe/N/S-C and (c) N-C.

Figure S2 TEM image of (a) Fe/N/S-CNTs and (b) Fe/N/S-C.

Figure S3 TEM image of Fe/N/S-CNTs before acid etching.
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Figure S4 FTIR spectra of precursors before (H-Fe/ZIF-8, Fe/ZIF-8 and FeSO4) and after pyrolysis 

(Fe/N/S-C and Fe/N/S-CNTs).

Figure S5 XRD patterns of (a) precursors before pyrolysis, (b) carbides after pyrolysis.  

Figure S6 Raman spectra of N-C, Fe/N/S-C and Fe/N/S-CNTs.

5



Figure S7 CV curves of Fe/N/S-CNTs in 0.1 M KOH.

Figure S8 LSV curves of Fe/N/S-CNTs at various rotation rates in 0.1 M KOH (inset: 

corresponding Koutecky-Levich plots).

Figure S9 Tafel slopes of N-C, Fe/N/S-C, Fe/N/S-CNTs and Pt/C in 0.1 M KOH.
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Figrue S10 SEM images of (a) Fe/N/S-CNTs-3 mL and (b) Fe/N/S-CNTs-9 mL

Figrue S11 N1s XPS spectra of (a) Fe/N/S-CNTs-3 mL and (b) Fe/N/S-CNTs-9 mL

Figure S12 LSV curves of the pyrolysis samples with different amount of hydrazine hydrate 

pretreatment.
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Figure S13 XRD pattern of Fe/N/S-CNTs before acid treatment.

 Figure S14 LSV curves of Fe/N/S-CNTs before and after acid treatment and SCN- poisoning. 

Figure S15 LSV curves of the pyrolysis samples with different iron sources.
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Figure S16 CV curves of Fe/N/S-CNTs in 0.5 M H2SO4.

Figure S17 LSV curves of Fe/N/S-CNTs at various rotation rates in 0.5 M H2SO4 (inset: 

corresponding Koutecky–Levich plots).

Figure S18 Open-circuit potential of Fe/N/S-CNTs and Pt/C.

Table S1. Elements content of Fe/N/S-C and Fe/N/S-CNTs from element analyzer and ICP, and 

superficial surface atomic content from XPS peak table.

catalyst C

(wt %)

N

(wt %)

S

(wt %)

Fe

(wt %)

Surface N 

(Atomic %)

Surface Fe

(Atomic %)

Fe/N/S-C 67.67 5.63 0.808 1.59 3.01 0.51

Fe/N/S-CNTs 68.8 5.34 1.051 1.43 6.21 0.59

Table S2. Comparison of the onset and half-wave potentials for ORR of non-noble metal 

catalysts systems from literature and this work in alkaline and acid medium
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Catalyst Electrolyte E1/2

vs RHE

Electrolyte E1/2

vs RHE

Reference

Fe/N/S-CNTs

NCNTs-2.5

0.1M KOH

0.1M KOH

0.887

0.789

0.5M H2SO4

0.5M H2SO4

0.767 This work

1

Fe@Fe3C/C-N 0.1M KOH 0.75 0.5M H2SO4 0.62 2

SN-CNTs 0.1M KOH 0.79 0.1M HClO4 0.56 3

Fe3/C 0.1M KOH 0.83 0.5M H2SO4 0.73 4

CoP-CMP800 0.1M KOH 0.82 0.5M H2SO4 0.64 5

PCN-FeCo/C 0.1M KOH 0.85 0.5M H2SO4 0.76 6

BCNFNHs 0.1M KOH 0.861 0.5M H2SO4 0.65 7

NFe/CNs 0.1M KOH 0.859 0.5M H2SO4 8

5%Fe-N/C 0.1M KOH 0.5M H2SO4 0.735 9

MSZIF-900 0.1M KOH 0.84 0.5M H2SO4 0.72 10
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