Supplementary Information

Enhancing the Thermoelectric Power Factor of Sr_{0.9}Nd_{0.1}TiO₃ through Control of the Nanostructure and Microstructure

D. Ekren ^a, A. Golinia ^a, F. Azough ^a, S. J. Day ^b,

D. Hernandez. Maldonado ^c, D.M. Kepaptsoglou ^c, Q. M. Ramasse ^c, R. Freer ^a

^a School of Materials, University of Manchester, Manchester, M13 9PL, UK.

^b Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire, OX11 0DE, UK

^c SuperSTEM Laboratory, STFC Daresbury Campus, Daresbury WA4 4AD, U.K.

Figure S.1 Thermoelectric dimensionless figure of merit of $SrTiO_3$ ceramics prepared with different *A*-site and *B*-site dopants using solid state reaction (SSR) and spark plasma sintering (SPS)¹⁻¹⁸

Figure S.2 X-Ray diffraction patterns for $Sr_{0.9}Nd_{0.1}TiO_3$ samples prepared with different amounts of ZrO_2

Figure S.3 X-Ray diffraction patterns for 3Z samples illustrating the effect of sintering time.

Figure S.4 Full profile Rietveld refinement from laboratory XRD data (λ =1.540598 Å) *for 3Z samples sintered for 4-24 hours*

Figure S.5 BSE-SEM micrographs for 3Z samples after (a) 4 hours, (b) 12 hours and (c-d) 24 hours of sintering. The values for the average grain size in shown in the top right inset of the figures.

Figure S.6 Grain size distribution data obtained from multiple SEM micrographs for 0Z-12h, 3Z-12h and 8Z-12 samples

x = 0 wt. %				x = 0.3 wt. %				x = 0.8 wt. %							
٠		٠	•	٠	•		•		•	•		•		•	
	•	100	110		•	•	100	110			•	100	110		
		٠	010	•	•	•	Ó	010	•	•		•	010	•	[001]
	•				•	•		•	•	•					
					•		•		•	•		•		•	
	•	•	•	•	•	. •	. •	•		*	. *	t ·	•	*	
					•		•		•	•	•	•	•	•	
		001	111		•	t •	001		•		•	001	111	•	
			110		•		•	110	•	•	•		110		[110]
•		t ·		•		۰.	•	•							
		•				• Q.									
		•	•				•	•	•						
	•	•	•	•			٠	•		•	•	٠	•		
	1	10 1	01	•		•	110 1	01	•		. 1	10 1	01		
	•		011		•	÷	٠	011		•			011		[111]
		•				•	•	•	•		•		•		
					•	•	•	•		•				•	

Figure S.7 SAED patterns along major zone axes for 0.5 wt% B_2O_3 doped $Sr_{0.9}Nd_{0.1}TiO_3$ samples codoped with different amounts of ZrO_2

Figure S.8 Low magnification TEM data showing high density of dislocations in 3Z-12h sample without ZrO_2 addition

Figure S.9 (a) Electrical conductivity at 313 and 869 K, and (b) power factor at 500 K with respect to ZrO_2 content.

Figure S.10 Measurement temperature (310, 500 and 1015 K) and sintering time dependence of power factor for 3Z-12 samples

Figure S. 11 Thermoelectric power factor for two different 02-12h samples during heating and cooling cycles of measurement

Figure S.12 Heating and cooling cycle data for electrical conductivity, the Seebeck coefficients and power factor data for 3Z-12h and 8Z-12h samples

ZrO ₂ content (wt.%)	0	0.3	0.8
Space Group	I4/mcm	I4/mcm	I4/mcm
R _{wp} /GOF	12.84/1.45	4.85/3.18	13.69/1.67
Lattice Parameters		•	
a (Å)	5.518449(2)	5.518705(3)	5.521464(2)
c (Å)	7.820044(5)	7.820201(7)	7.823195(5)
V (Å ³)	238.1460(3)	238.1729(4)	238.5024(2)
Sr/Nd		•	
X / Y / Z	0 / 0.5 / 0.25	0 / 0.5 / 0.25	0 / 0.5 / 0.25
b _{eq}	0.003(2)	0.079(3)	0.090(2)
Occupancy	0.9/0.1	0.9/0.1	0.9/0.1
Ti			
X / Y / Z	0 / 0 / 0	0 / 0 / 0	0 / 0 / 0
b _{eq}	0.224(2)	0.073(4)	0.172(3)
Occupancy	1	1	1
01			
X / Y / Z	0 / 0 / 0.25	0 / 0 / 0.25	0 / 0 / 0.25
b _{eq}	0.248(17)	0.200(30)	0.400(20)
Occupancy	1	1	1
O2			
X	0.23330(12)	0.23147(19)	0.23379(13)
Y	0.73330(12)	0.73147(19)	0.73379(13)
Z	0	0	0
b _{eq}	0.179(11)	0.300(20)	0.335(16)
Occupancy	1	1	1
Bond lengths			
Ti-O1	1.95501	1.95505	1.95579
Ti-O2	1.95584	1.95469	1.95626

Table S.1 Structural parameters and Ti-O bond lengths for $Sr_{0.9}Nd_{0.1}TiO_3$ samples co-doped with 0.5 wt.% B_2O_3 and x different amounts of ZrO₂ from SXPD data (λ =0.825939(10) Å).

Composition	Sample	PF _{max}	Temperature	Reference	
Composition	characteristics	(µW/m.K ²)	(K)		
A-site doping					
Sr _{1-x} La _x TiO ₃	Single-crystal	3600	300	19	
Sr _{0.9} Nd _{0.1} TiO ₃	Polycrystalline	1690	423	2	
Sr _{0.9} Pr _{0.1} TiO ₃	Polycrystalline	1400	670	15	
Sr _{0.9} Nd _{0.1} TiO _{3-ð}	Polycrystalline	1550	440	9	
Sr _{0.85} Pr _{0.15} TiO ₃	Polycrystalline	1320	773	20	
Sr _{0.9} Gd _{0.1} TiO _{3-δ}	Polycrystalline	1600	570	5	
Sr _{0.91} La _{0.09} TiO _{3-δ}	Polycrystalline	1352	500	21	
$Sr_{0.94}Y_{0.04}TiO_{3-\delta}$	Polycrystalline	1164	423	16	
$Sr_{0.9}Nd_{0.1}TiO_{3\pm\delta}$	Polycrystalline	2000	500	* This study	
+ 0.5 wt% B ₂ O ₃ + 0.3 wt% ZrO ₂	i oryerystannie	2000	500	i ins study	
B-site doping					
SrTi _{0.9} Ta _{0.1} O _{3-δ}	Polycrystalline	1420	470	22	
SrTi _{0.9} Nb _{0.1} O ₃	Polycrystalline	1450	523	23	
Dual doping					
Sr _{0.83} La _{0.10} Dy _{0.07} TiO ₃	Polycrystalline	1237	700	4	
Sr _{0.95} La _{0.05} Ti _{0.95} Nb _{0.05} O ₃	Polycrystalline	2370	473	24	
$Sr_{0.80}La_{0.13}Ti_{0.95}Nb_{0.05}O_3$	Polycrystalline	1300	525	13	
Sr _{0.85} La _{0.075} Sm _{0.075} TiO _{3-δ}	Polycrystalline	1400	573	25	
Sr _{0.9} La _{0.1} Ti _{0.9} Nb _{0.1} O ₃	Polycrystalline	1700	623	26	
A-site deficient					
Sr _{0.94} Ti _{0.80} Nb _{0.2} O ₃	Polycrystalline	1625	450	12	
Sr _{0.775} La _{0.15} TiO _{3-δ}	Polycrystalline	1400	473	6	
$Sr_{0.95}Ti_{0.9}Nb_{0.1}O_{3-\delta}$	Polycrystalline	1600	450	8	
Sr _{0.75} La _{0.1} Dy _{0.1} TiO ₃	Polycrystalline	1216	373	27	
Inclusion/Additive					
SrTi _{0.85} Nb _{0.15} O ₃ + 3wt% YSZ	Polycrystalline	720	400	28	
Sr _{0.9} La _{0.1} TiO ₃ + 0.6wt% Graphene	Polycrystalline	2500	330	29	

Table S.2 Thermoelectric Power factors for SrTiO₃ based thermoelectric oxides

References

- 1 A. Kikuchi, N. Okinaka and T. Akiyama, Scr. Mater., 2010, 63, 407–410.
- 2 J. Liu, C. L. Wang, W. B. Su, H. C. Wang, J. C. Li, J. L. Zhang and L. M. Mei, *J. Alloys Compd.*, 2010, 492, 54–56.

- 3 A. M. Dehkordi, S. Bhattacharya, T. Darroudi, G. Jennifer W, U. Schwingenschlogl, H. N. Alshareef and T. M. Tritt, *Chem. Mater.*, 2014, 26, 2478–2485.
- H. C. Wang, C. L. Wang, W. B. Su, J. Liu, Y. Zhao, H. Peng, J. L. Zhang, M. L. Zhao, J. C. Li,
 N. Yin and L. M. Mei, *Mater. Res. Bull.*, 2010, 45, 809–812.
- 5 L. Li, Y. Liu, X. Qin, D. Li, J. Zhang, C. Song and L. Wang, J. Alloys Compd., 2014, 588, 562– 567.
- 6 Z. Lu, H. Zhang, W. Lei, D. C. Sinclair and I. M. Reaney, Chem. Mater., 2016, 28, 925–935.
- D. Srivastava, C. Norman, F. Azough, M. C. Schäfer, E. Guilmeau, D. Kepaptsoglou, Q. M. Ramasse, G. Nicotra and R. Freer, *Phys. Chem. Chem. Phys.*, 2016, 26475–26486.
- A. V. Kovalevsky, M. H. Aguirre, S. Populoh, S. G. Patrício, N. M. Ferreira, S. M. Mikhalev, D.
 P. Fagg, A. Weidenkaff and J. R. Frade, *J. Mater. Chem. A*, 2017, 5, 3909–3922.
- A. V Kovalevsky, A. A. Yaremchenko, S. Populoh, P. Thiel, D. P. Fagg, A. Weidenkaff and J. R. Frade, *Phys. Chem. Chem. Phys.*, 2014, 16, 26946–54.
- 10 H. Muta, K. Kurosaki and S. Yamanaka, J. Alloys Compd., 2003, 350, 292–295.
- 11 P.-P. Shang, B.-P. Zhang, Y. Liu, J.-F. Li and H.-M. Zhu, J. Electron. Mater., 2011, 40, 926– 931.
- 12 A. V. Kovalevsky, A. A. Yaremchenko, S. Populoh, A. Weidenkaff and J. R. Frade, *J. Phys. Chem. C*, 2014, 118, 4596–4606.
- S. R. Popuri, A. J. M. Scott, R. A. Downie, M. A. Hall, E. Suard, R. Decourt, M. Pollet and J.-W. G. Bos, *RSC Adv.*, 2014, 4, 33720–33723.
- A. V. Kovalevsky, S. Populoh, S. G. Patrício, P. Thiel, M. C. Ferro, D. P. Fagg, J. R. Frade and A. Weidenkaff, *J. Phys. Chem. C*, 2015, 119, 4466–4478.
- 15 A. V. Kovalevsky, A. A. Yaremchenko, S. Populoh, A. Weidenkaff and J. R. Frade, J. Appl. Phys., 2013, 113, 0–8.
- 16 C. Chen, T. Zhang, R. Donelson, T. T. Tan and S. Li, J. Alloys Compd., 2015, 629, 49–54.
- 17 S. Bhattacharya, A. Mehdizadeh Dehkordi, S. Tennakoon, R. Adebisi, J. R. Gladden, T. Darroudi, H. N. Alshareef and T. M. Tritt, J. Appl. Phys., 2014, 115, 223712.
- 18 J. Liu, C. L. Wang, Y. Li, W. B. Su, Y. H. Zhu, J. C. Li and L. M. Mei, J. Appl. Phys., 2013, 114, 223714.

- 19 T. Okuda, K. Nakanishi, S. Miyasaka and Y. Tokura, *Phys. Rev. B*, 2001, 63, 113104.
- 20 A. M. Dehkordi, S. Bhattacharya, J. He, H. N. Alshareef and T. M. Tritt, *Appl. Phys. Lett.*, 2014, 104, 193902.
- 21 K. Park, J. S. Son, S. I. Woo, K. Shin, M.-W. Oh, S.-D. Park and T. Hyeon, J. Mater. Chem. A, 2014, 2, 4217.
- A. A. Yaremchenko, S. Populoh, S. G. Patrício, J. Macías, P. Thiel, D. P. Fagg, A. Weidenkaff, J. R. Frade and A. V. Kovalevsky, *Chem. Mater.*, 2015, 27, 4995–5006.
- 23 B. Zhang, J. Wang, T. Zou, S. Zhang, X. Yaer, N. Ding, C. Liu, L. Miao, Y. Li and Y. Wu, J. Mater. Chem. C, 2015, 3, 11406–11411.
- 24 T. Teranishi, Y. Ishikawa, H. Hayashi, A. Kishimoto, M. Katayama and Y. Inada, *J. Am. Ceram. Soc.*, 2013, 96, 2852–2856.
- 25 A. C. Iyasara, W. L. Schmidt, R. Boston, D. C. Sinclair and I. M. Reaney, *Mater. Today Proc.*, 2017, 4, 12360–12367.
- 26 J. Wang, B. Y. Zhang, H. J. Kang, Y. Li, X. Yaer, J. F. Li, Q. Tan, S. Zhang, G. H. Fan, C. Y. Liu, L. Miao, D. Nan, T. M. Wang and L. D. Zhao, *Nano Energy*, 2017, 35, 387–395.
- 27 J. Han, Q. Sun and Y. Song, J. Alloys Compd., 2017, 705, 22–27.
- 28 N. Wang, H. Li, Y. Ba, Y. Wang, C. Wan, K. Fujinami and K. Koumoto, J. Electron. Mater., 2010, 39, 1777–1781.
- 29 Y. Lin, C. Norman, D. Srivastava, F. Azough, L. Wang, M. Robbins, K. Simpson, R. Freer and I. A. Kinloch, ACS Appl. Mater. Interfaces, 2015, 7, 15898–15908.