Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Organic promoters driven fast synthesis of zeolite Beta and its acceleration

mechanism

Dongpu Zhao^{a,b}, Weifeng Chu^{a,b}, Yanan Wang^{a,b}, Xiangxue Zhu^a, Xiujie Li^a, Sujuan Xie^a, Jie An^a, Wenjie Xin^a, Shenglin Liu^a*,

and Longya Xu^{a*}

^a State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023,

Liaoning, China

^b University of Chinese Academy of Sciences, Beijing 100049, China

* Correspondence to: slliu@dicp.ac.cn, lyxu@dicp.ac.cn

Figure S1. FESEM images of zeolite Beta synthesized with (A) and without (B) NMP at 140 °C for 60 h.

Figure S2. Crystallization process of zeolite Beta synthesized with NMP/SiO₂ molar ratios of 0.00 (A), 0.25 (B), 0.50 (C), 0.75 (D), 1.00 (E), 2.00 (F), and 3.00 (G) at 140 °C.

Figure S3. SEM images of the products (with NMP/SiO₂ molar ratio of 0.00) synthesized at 140 °C for different periods of time.

Figure S4. TEM images (A, B) and HRTEM image (C) of the zeolite Beta (with NMP/SiO₂ molar ratio of 0.00) synthesized at

140 °C for 108 h.

Figure S5. SEM images of the products (with NMP/SiO₂ molar ratio of 0.25) synthesized at 140 °C for different periods of time.

Figure S6. SEM images of the products (with NMP/SiO₂ molar ratio of 0.50) synthesized at 140 °C for different periods of time.

Figure S7. SEM images of the products (with NMP/SiO₂ molar ratio of 0.75) synthesized at 140 °C for different periods of time.

Figure S8. SEM images of the products (with NMP/SiO₂ molar ratio of 1.00) synthesized at 140 °C for different periods of time.

Figure S9. SEM images of the products (with NMP/SiO₂ molar ratio of 2.00) synthesized at 140 °C for different periods of time.

Figure S10. SEM images of the products (with NMP/SiO₂ molar ratio of 3.00) synthesized at 140 °C for different periods of time.

Table S1. Synthesis conditions, Si/Al ratio and N₂ adsorption data of the samples

Sample	NMP/SiO ₂	Time/Temperature(°C)	Si/Al (XRF)	\mathbf{S}_{BET}	V _{micro}	Sext	V _{meso}
--------	----------------------	----------------------	-------------	---------------------------	--------------------	------	-------------------

Beta	0.00	108 h/140	12.03	728	0.215	180	0.283
Beta	0.50	60 h/140	13.20	682	0.195	195	0.554
Beta	1.00	60 h/140	14.81	725	0.201	216	0.584
Beta	2.00	60 h/140	18.08	736	0.222	175	0.365
Beta	3.00	60 h/140	18.25	737	0.232	147	0.285

Figure S11. Crystallization process of the products synthesized without (A) and with (B) NMP at 120 °C.

Figure S12. SEM images of zeolite Beta synthesized without (A, 240 h) and with (B, 24 h) NMP at 120 °C.

Figure S13. FESEM images of zeolite Beta ($P/SiO_2 = 0.50$) synthesized by using 2-pyrrolidinone (A: 18 h), NEP (B: 21 h) and

NPP (C: 120 h) as promoter.

Figure S14. Photograph of the supernatant of the sample ($P/SiO_2 = 0.50$) synthesized by using NPP as promoter.

Figure S15. Crystallization process of ZSM-11 synthesized without (A) and with (B) NMP at 150 °C. Molar gel composition: x NMP/1.0 SiO₂/0.15 Na₂O/0.016 Al₂O₃/0.2 TBABr/40 H₂O (x = 0.00 and 1.00).

Figure S16. SEM images of ZSM-11 synthesized without (A, 39 h) and with (B, 27 h) NMP at 150 °C.

Figure S17. (A) Liquid-state ¹³C NMR spectra of the supernatants. (B) Solid-state ¹³C NMR spectrum of the final product (at 140

°C for 108 h).

Figure S18. TG (A) and DTG (B) curves of the samples synthesized with different NMP/SiO₂ molar ratios after 3 h of heating at

140 °C. The table gave the corresponding weight loss assigned to TEA⁺.

Figure S19. Deconvoluted ²⁹Si MAS NMR spectra of the samples synthesized with (A) and without (B) NMP, crystallization-

time dependence of relative concentration of Q4 (Si(SiO)₄) species (from ²⁹Si MAS NMR).

Figure S20. FT-IR spectra of NMP (A), and the calcined samples synthesized without (B: $NMP/SiO_2 = 0.00$) and with (C:

 $NMP/SiO_2 = 2.00) NMP.$

Figure S21. FT-IR spectra of the samples synthesized with different NMP/SiO₂ molar ratios after 0 h (A) and 3 h (B) of heating

at 140 °C. The table quantified the 5Rs concentration in the samples (at 140 °C for 3 h) by comparing the peak area of 5Rs (at 567 cm⁻¹) with that of T-O bending vibration (at 450 cm⁻¹).

Figure S22. FESEM images of the products (with NMP/SiO₂ molar ratio of 2.00) synthesized at 140 °C for different periods of time: (A) 0 h, (B) 3 h, (C) 6 h, (D) 7.5 h, (E) 9 h , (F and G) 10.5 h, and (H) 12 h.

Figure S23. TEM images of the products (with NMP/SiO₂ molar ratio of 2.00) synthesized at 140 °C for different periods of time: (A) 0 h, (B) 3 h, (C) 6 h, (D) 9 h, (E) 10.5 h, and (G) 12 h. HRTEM images of the products obtained at 10.5 h (F), and 12 h (H).

Figure S24. XRD pattern (A) and SEM image (B) of C-Beta.

Figure S25. N₂ sorption isotherms for *Beta and C-Beta.

Figure S26. NH₃-TPD profiles for *Beta and C-Beta.

