ELECTRONIC SUPPORTING INFORMATION

Exceptional TcO₄⁻ sorption capacity and highly efficient ReO₄⁻ luminescence sensing by Zr⁴⁺ MOFs

Sofia Rapti,^a† Stavros A. Diamantis,^b†Argyro Dafnomili,^b†Anastasia Pournara,^a Euaggelia Skliri,^c Gerasimos S. Armatas,^c Athanassios C. Tsipis,^aIoannis Spanopoulos,^d Christos D. Malliakas.^d Mercouri G. Kanatzidis,^d John C. Plakatouras,^{*,a} Fotini Noli,^{*,b} Theodore Lazarides^{*,b} and Manolis J. Manos^{*,a}

^{a.} Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; email: iplakatu@cc.uoi.gr, email: <u>iplakatu@cc.uoi.gr</u>, <u>emanos@cc.uoi.gr</u>

- ^{b.} Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; email: <u>noli@chem.auth.gr</u>, <u>tlazarides@chem.auth.gr</u>
- Department of Materials Science and Technology, University of Crete
 71003 Heraklion, Greece.
- *d.* Department of Chemistry, Northwestern University, Evanston, IL 60208
 † These authors contributed equally.

EXPERIMENTAL SECTION

Materials. All chemicals were purchased from Aldrich. The solvents were used as received. The water used was purified through a Millipore system.

SYNTHESES

MOR-1 and **MOR-2/MOR-2-HA** materials were prepared as reported in references 18 and 19 respectively (see main article).

ANALYTICAL AND CHARACTERIZATION TECHNIQUES

In house X-ray powder diffraction. Powder X-ray diffraction of the samples were measured at room temperature on a STOE-STADIMP powder diffractometer equipped with an asymmetric curved Germanium monochromator (CuK α 1 radiation, $\lambda = 1.54056$ Å) and one-dimensional silicon strip detector (MYTHEN2 1K from DECTRIS). The line focused Cu X-ray tube was operated at 40 kV and 40 mA. Powder of each sample was packed in a 1 mm diameter polyimide capillary (polymer substrate with neither Bragg reflections nor broad peaks above 10 degrees) and measured in Debye-Scherrer geometry on a spinning stage (~ 200 rpm). Intensity data from 3 to 125 degrees two theta were collected over a period of 17 h with a step of 0.005 degrees. Instrument was calibrated against a NIST Silicon standard (640d) prior the measurement.

IR spectroscopy. IR spectra were recorded on KBr pellets in the 4000-400 cm⁻¹ range using a Perkin-Elmer Spectrum GX spectrometer.

Energy dispersive spectroscopy (EDS) analyses. These measurements were performed on a JEOL (JEOL 6510 LV) scanning electron microscope (SEM) equipped with an Oxford dispersive X-ray spectroscopy (EDS) detector. Data acquisition was performed with an accelerating voltage of 20 kV and 120 s accumulation time.

Gas sorption measurements. N₂ adsorption-desorption isotherms were measured at 77 K on a Quantachrome Nova 3200*e* sorption analyzer. Before analysis, all samples were EtOH-exchanged, activated via supercritical CO₂ drying and then, degassed at 120 °C under vacuum ($<10^{-5}$ Torr) for 12 h. The specific surface areas were calculated by applying the Brumauer-Emmett-Teller (BET) method to the branch of isotherms in the 0.05–0.25 relative pressure (P/P_o) range.

Re analyses by UV/Vis. The method for analysis of ReO₄⁻ via UV-Vis spectroscopy is described in reference: L. V. Borisova, A. N. Ermakov and A. B. Ismagulova, *Analyst* **1982**, *107*, 495.

Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS). Quantification of rhenium (Re) was accomplished using ICP-MS of acidified samples. Specifically, 300 μ L of concentrated nitric acid (67-70% TraceMetalTM Grade, Fisher) was added to 50 μ L aqueous samples. Ultra pure H₂O (18.2 M Ω ·cm) is then added to produce a final sample solution of 10 mL. Quantitative standards were made using a commercial 1000 ppm Re solution (Sigma-Aldrich) which created a 100 ppb elemental standard. All samples (including standards and blank solution) contained 3% HNO₃ (67-70% TraceMetalTM Grade, Fisher).

ICP-MS was performed on a computer-controlled (QTEGRA software) Thermo iCapQ ICP-MS (Thermo Fisher Scientific, Waltham, MA, USA) operating in KED mode and equipped with an ESI SC-2DX PrepFAST autosampler (Omaha, NE, USA). Internal standard was added inline using the prepFAST system and consisted of 1 ng/mL of a mixed element solution containing Bi, In, ⁶Li, Sc, Tb, Y (IV-ICPMS-71D from Inorganic Ventures). Online dilution was also carried out by the prepFAST system and used to generate calibration curves consisting of 1, 2, 5, 10, 20, 50, 100 ppb Re. Each sample was acquired using 1 survey run (10 sweeps) and 3 main (peak jumping) runs (40 sweeps). The isotopes selected for analysis were ¹⁸⁵Re and ¹⁸⁷Re. ⁸⁹Y and ¹⁵⁹Tb were also analyzed and were chosen as internal standards for data interpolation and machine stability. Instrument performance is optimized daily through autotuning followed by verification via a performance report (passing manufacturer specifications).

ION EXCHANGE STUDIES

Preparation of the column. 50 mg of **MOR-2-HA** composite and 5 g of sand (50-70 mesh SiO₂) was mixed in a mortar and pestle and filled in a glass column (0.7 cm ID column). Prior the ion exchange studies, the column was washed with \sim 7 mL HCl (4 M) solution and deionized water.

Batch ReO₄⁻ ion-exchange studies. A typical ion-exchange experiment of MOR-1 or MOR-2 with ReO₄⁻ is the following: In a solution of NaReO₄ (0.4 mmol) in water (10 mL, pH ~ 7), compound MOR-1 or $2(\sim 0.04 \text{ mmol})$ was added as a solid. The mixture was kept under

magnetic stirring for ~ 20 min. Then, the polycrystalline material was isolated by filtration, washed several times with water and acetone and dried in the air.

The ReO₄⁻ uptake from solutions of various concentrations (0.6-15 mM) was studied by the batch method at $V:m \sim 1000$ mL/g, room temperature and 1 h contact. Re analysis has been made via UV-Vis (for Re concentrations up to 4-5 ppm) or ICP-MS (for lower Re concentrations). These data were used for the determination of ReO₄⁻ sorption isotherms. The competitive ion exchange experiments were also carried out with the batch method at *V*: *m* ratio ~ 1000 mL/g, room temperature and 1 h contact. For the determination of the sorption kinetics, ReO₄⁻ ion-exchange experiments of various reaction times (1-60 min) have been performed. For each experiment, a 10 mL sample of ReO₄⁻ solution was added to each vial (containing 10 mg of **MOR-1**, **MOR-2**, **UiO-66**) and the mixtures were kept under magnetic stirring for the designated reaction times. The suspensions from the various reactions were filtrated and the resulting solutions were analyzed for their chromium content with UV-Vis or ICP-MS. It should be also noted that UiO-66 was pretreated with 4 M HCl acid prior its use for ReO₄⁻ sorption studies.

Batch ^{99m}TcO₄⁻ ion-exchange studies.

For the Tc-sorption experiments perthenate were used as chemical analog of pertechnetate. The tests were performed using NH4ReO4 solutions with ^{99m}TcO4⁻ ($t_{1/2}$ of ^{99m}Tc 6.0 hours, Ir 141 keV) as tracer in the concentration region 10-5000 mg/L (0.054-26.9 mmol/L) (pH 2, dosage 15 mg of sorbent in 10 mL solution). ^{99m}TcO4⁻ was eluted by 0.9% NaCl from a ^{99m}TcO generator and measured using gamma-spectroscopy with an HPGe detector (CANBERRA, efficiency 20%, energy resolution 2.1 keV for the 1332 keV of ⁶⁰Co γ -radiation).

Column Ion-Exchange studies

Several bed volumes of the solution were passed through the column and collected at the bottom in glass vials. The solutions were analyzed with UV-Vis or ICP-MS (for concentrations of Re < 3 ppm). The regeneration of the column was performed by its treatment with \sim 7 mL of HCl acid (4 M) solution. Then, the column is washed with enough water to remove excess acid. Column containing only sand as stationary phase showed no ReO4⁻ sorption capacity.

FLUORESCENCE SENSING STUDIES

The fluorescence spectra were measured on a Hitachi F7000 spectrofluorometer. The light source was a Xenon arch lamp and the detector a red sensitive Hamamatsu R928 photomultiplyer tube. All spectra are corrected for instrument response using the correction function generated after calibration of the instrument with a standard light source. Appropriate long pass filters were used to remove scattering from the sample and the monochromators. For the Re(VII) sensing experiments, 1 mg of the MOF in the form of a fine powder were suspended in 10 mL of the respective medium (doubly distilled water or potable water) the pH of which was previously adjusted to 5 by careful addition of 4M HCl. The system was sonicated for 30 min and 1 mL of the resulting fine suspension was transferred to a luminescence quartz cuvette. Aliquots of NH4ReO4 10^{-3} M (dissolved in the same medium as the MOF) were added using a HamiltonTM precision microsyringe (50 µL range) in order to achieve the desired Re(VII) concentration. Emission spectra were recorded 2 min after each addition. The emission spectrum after each addition was recorded three times to ensure signal stability.

Figure S1. ReO₄⁻ sorption kinetics data for **MOR-1**, **MOR-2** and **UiO-66** materials (initial ReO₄⁻ concentration = 0.58 mM, pH \sim 7).

Figure S2. Fitting of the ReO₄⁻ sorption kinetics data for MOR-1 with the Lagergren's Firstorder equation $q_t = q_e [1 - \exp(-K_L t)]$

(Fitting data: $R^2=0.90$, $q_e=0.296\pm0.001$ mmol/g, $K_L=1.25\pm0.07$ min⁻¹)

and the Ho and Mckay's pseudo-second-order equation

$$q_t = \frac{k_2 q_e t^2}{1 + k_2 q_e t}$$

(Fitting data: $R^2=0.83$, $q_e=0.306\pm0.004$ mmol/g, $k_2=14.5\pm3.3$ g/mmol·min)

where q_t = the amount (mg/g) of ion sorbed by the sorbent at different reaction times (t), q_e = the amount (mg/g) of ion sorbed in equilibrium, K_L (min⁻¹)= the Lagergren or first-order rate constant, k_2 (g/mmol·min)= the second-order rate constant.

Figure S3. Fitting of the ReO₄⁻ sorption kinetics data for MOR-2 with the Lagergren's Firstorder equation (Fitting data: R²=0.78, q_e =0.417±0.002 mmol/g, K_L =1.34±0.09 min⁻¹) and the Ho and Mckay's pseudo-second-order equation (Fitting data: R²=0.98, q_e =0.431±0.001 mmol/g, k_2 =11.4±0.6 g/mmol·min).

Figure S4. ReO_4^- sorption kinetics data for **MOR-2** with solutions of low initial ReO_4^- concentrations. Red and black spheres correspond to sorption data with initial ReO_4^- concentrations of 26.8 and 5.4 μ M respectively. The lines are only a guide to the eye.

Figure S5. ReO_4^- sorption isotherm data for MOR-1 (pH ~7) and their fitting with the Langmuir-Freundlich model

$$q = q_m \frac{(bC_e)^{\frac{1}{n}}}{1 + (bC_e)^{\frac{1}{n}}}$$

(Fitting data: $R^2=0.95$, $q_m = 1.47 \pm 0.07$ mmol/g, $b = 1.9 \pm 0.1$ L/mmol, $n = 0.28 \pm 0.06$)

where q (mg/g) is the amount of the ion sorbed at the equilibrium concentration $C_e \text{ (mmol/g)}$, $q_m \text{ (mmol/g)}$ is the maximum sorption capacity of the sorbent, b (L/mmol) is the Langmuir constant, 1/n is a Freundlich constant. Fitting of the data with the Langmuir model

$$q = q_m \frac{bC_e}{1 + bC_e}$$

is not satisfactory ($R^2=0.79$).

Figure S6. ReO₄⁻ sorption isotherm data for MOR-2 (pH ~7) and their fitting with the Langmuir-Freundlich model (Fitting data: R²=0.98, $q_m = 4.1\pm0.4$ mmol/g, $b = 0.75\pm0.13$ L/mmol, $n = 0.78\pm0.11$). Fitting of the data can be also done with the Langmuir (Fitting data: R²=0.97, $q_m = 4.8\pm0.3$ mmol/g, $b = 0.54\pm0.08$ L/mmol) and Freundlich models (Fitting data: R²=0.93, $K_F = 1.65\pm0.12$, $n = 2\pm0.2$)

Freundlich equation:

$$q = K_F C_e^{\frac{1}{n}}$$

where K_F and 1/n are the Freundlich constants

Figure S7. ReO₄⁻ sorption isotherm data for MOR-2 (pH ~2) and their fitting with the Langmuir-Freundlich model (Fitting data: R²=0.94, $q_m = 3.2\pm0.2$ mmol/g, $b = 0.38\pm0.03$ L/mmol, $n = 0.40\pm0.07$). Fitting of the data can be done also with the Langmuir (Fitting data: R²=0.88, $q_m = 4.9\pm0.7$ mmol/g, $b = 0.18\pm0.05$ L/mmol) and Freundlich models (Fitting data: R²=0.89, $K_F = 0.89\pm0.14$, $n = 1.8\pm0.3$), although the fitting with the Langmuir-Freundlich model is more satisfactory.

Figure S8. ReO₄⁻ sorption isotherm data for MOR-2 (1 M HNO₃) and their fitting with the Langmuir-Freundlich model (Fitting data: R²=0.95, q_m =3.6±0.3 mmol/g, $b = 0.54\pm0.03$ L/mmol, $n = 0.20\pm0.06$). Fitting of the data with the Langmuir (R² =0.83) and Freundlich models (R² =0.82) was not satisfactory.

Figure S9. Results for the selectivity of **MOR-1** and **MOR-2** for the sorption of ReO₄⁻ vs. Cl⁻, Br⁻, NO₃⁻ and SO₄²⁻.

Figure S10. Fitting of the breakthrough curves (red line) for the column soprtion experiments of **MOR-2-HA** with the ReO₄⁻ solution (initial ReO₄⁻ concentration = 1.14 mM, pH~ 7, flow rate ~ 1.75 mL/min). The data are fitted with an equation (Thomas model) of the type $y = \frac{1}{1 + \exp(A - Bx)}$, where $A = \frac{k_{Th}q_{max}m}{Q}$, $B = \frac{k_{Th}C_0}{Q}$ (where C and C₀ represent the concentration (mmol L⁻¹) of the ion in the effluent and its initial concentration (mmol L⁻¹) respectively, k_{Th} (L mmol⁻¹ min⁻¹) is the Thomas model or sorption rate constant, q_{max} (mmol

 g^{-1}) is the sorption capacity at the saturation point, m (mg) is the sorbent mass, Q and V_{eff} are the volumetric flow (mL min⁻¹) and the effluent volume (mL) respectively.

The results of the fitting are shown in Table S1.

Table S1. Fitting of the column sorption data and the experimentally found q_{max} values.

	Fitting results			Thomas model parameters		
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		k_{Th}	$q_{max}(\text{mmol}^{-1} \text{ g}^{-1})$		
Run				$(L \text{ mmol}^{-1} \text{ min}^{-1})$		
1	10.00	0.000	0.000	1 2 5 4 9 9 9	0.045046	
	13.667	0.896	0.999	1.374809	0.347946	
2						
	16.728	1.040	0.999	1.596399	0.36674	
3						
	12.107	0.778	0.999	1.194268	0.354816	
4		0.807		1.238601	0.327951	
	11.606		0.999			

The breakthrough capacity Q_b (mmol) can be determined by the equation:

$Q_b = C_0 V_b$

where C₀ and V_b represent the initial concentration of ReO₄⁻ (mmol L⁻¹) and the volume (L) of the solution coming through the column until the breakpoint concentration (where the ReO₄⁻ is detected) respectively. For all runs ~ 100% removal of ReO₄⁻ was observed for 3 bed volumes or 10.5 ml of effluent. Thus, V_b= 10.5x10⁻³ L. Therefore, Q_b= 0.01197 mmol or ~0.24 mmol ReO₄⁻/g (considering that the column contains 0.05 g of **MOR-2-HA**).

Figure S11. Kinetic sorption data that were determined using ReO_4^- solutions (0.54 mM, pH ~2) with $^{99\text{m}}\text{TcO}_4^-$ as tracer. The lines are only a guide to the eye.

Figure S12. Isotherm sorption data that were determined using ReO₄⁻ solutions (0.054-26.9 mM, $pH \sim 2$) with ^{99m}TcO₄⁻ as tracer.

Computational Details

All calculations were performed using the Gaussian09 program suite.¹ The geometries of all stationary points were fully optimized, without symmetry constraints, employing the wB97XD functional from Head-Gordon and coworkers, which includes empirical dispersion.² For the geometry optimizations, we used the all electron ADZP basis set for Tc³ and Re⁴ metal atoms (M) which an augmented Gaussian basis set of double zeta valence quality while for the rest, non metal atoms (E) we used the 6-31+G(d) basis set. Hereafter, the computational protocol employed would be abbreviated as wB97XD/ADZP(M)U6-31+G(d)(E). All stationary points were identified as minima (number of imaginary frequencies Nimag = 0). Water solvent effects were taken into account with the polarizable continuum model (PCM) using the integral equation formalism variant (IEFPCM) being the default self-consistent reaction field (SCRF) method.⁵ The binding energies, *BE*, corresponding to the interactions of the MO4⁻ (M = Tc or Re) with the [PhNH₃]⁺ and [PhNH₂CH₂PyH]²⁺ ligands, were calculated according to the following equation:

 $BE = (E_{tot}[A]^+ + E_{tot}[MO_4]^-) - E_{tot}[A]^+[MO_4]^-$

where $E_{tot}[A]^+$, $E_{tot}[MO_4]^-$ and $E_{tot}[A]^+[MO_4]^-$ are the total electronic energies of the cationic ligands $[A]^+$, metallic anions $[MO_4]^-$ and the $[A]^+[MO_4]^-$ adducts respectively. The NBO population analysis was performed using Weinhold's methodology.^{6,7} The AIM and RDG methods were employed as implemented in the Multiwfn software.⁸ According to Bader's^{9,10} theory, the presence of a BCP between two atoms indicates bond formation. The values of certain parameters at BCPs are used to clarify the nature of the bond formed between two atoms. Espinosa et al.¹¹ classified the bonding interactions into three categories: (1) Pure closed-shell interactions (e.g., ionic bonds, hydrogen bonds and van der Waals interactions) characterized by $|V_{BCP}|/G_{BCP}>1$ ($\nabla^2 \rho_{BCP}>0$ and $H_{BCP}>0$); (2) pure open-shell (covalent) interactions characterized by $|V_{BCP}|/G_{BCP}>2$ ($\nabla^2 \rho_{BCP}<0$ and $H_{BCP}<0$); and (3) intermediate bonds with $1 < |V_{BCP}|/G_{BCP}<2$ (i.e., $\nabla^2 \rho_{BCP}>0$ and $H_{BCP}<0$). Finally, the RDG is defined as follows:

$$\text{RDG}(r) = \frac{1}{2(3\pi^2)^{1/3}} \frac{|\nabla \rho(\rho)|}{\rho(r)^{4/3}}$$

where $\rho(\mathbf{r})$ is the electron density.

Figure S13. Optimized geometries of the adducts formed between SO_4^{2-} and NO_3^{-} with $[PhNH_3]^+$ and $[PhNH_2CH_2PyH]^{2+}$ ligands (distances in Å).

Figure S14. 3D plots of RDG (a) and BCPs derived from AIM analysis (b) for the adducts formed between anions and the cationic ligands.

Table S2. Topological and energetic properties of $\rho(\mathbf{r})$ calculated at the (3,-1) bond critical point (BCP) of the O…H interactions. The associated units in parentheses: $\rho_{\rm BCP}$ (eÅ⁻³), and $\nabla^2 \rho_{\rm BCP}$ (eÅ⁻⁵), $G_{\rm BCP}$, $V_{\rm BCP}$ and $H_{\rm BCP}$ (in kJ/mol per atomic unit volume) and $H_{\rm BCP}/\rho_{\rm BCP}$ (in kJ/mol per electron). The bond degree parameter $H_{\rm BCP}/\rho_{\rm BCP}$ represents either the covalence ($H_{\rm BCP} < 0$) or the softening ($H_{\rm BCP} > 0$) degree of the interaction.

Davamatar	$[PhNH_3]^+[TcO_4]^-$		[PhNH ₂	$[PhNH_2CH_2PyH]^{2+}[TcO_4]^{-1}$			$[PhNH_3]^+[ReO_4]^-$		$[PhNH_2CH_2PyH]^{2+}[ReO_4]^{-1}$		
rarameter -	BCPA	BCP _B	BCPA	BCP _B	BCP _C	_	BCPA	BCP _B	BCPA	BCP _B	BCP _C
$ ho_{_{ m BCP}}$	0.010	0.048	0.049	0.019	0.013		0.012	0.054	0.061	0.028	0.041
$ abla^2 ho_{ m BCP}$	0.036	0.165	0.171	0.062	0.045		0.043	0.185	0.207	0.088	0.152
$G_{_{ m BCP}}$	0.008	0.042	0.043	0.016	0.010		0.010	0.047	0.055	0.023	0.038
$V_{\rm BCP}$	-0.007	-0.043	-0.044	-0.016	-0.010		-0.009	-0.048	-0.058	-0.024	-0.037
$ V_{\rm BCP} /G_{\rm BCP}$	0.875	1.024	1.023	1.000	1.000		0.900	1.021	1.055	1.043	0.974
$H_{\rm BCP}$	0.001	-0.001	-0.001	-0.0002	0.001		0.001	-0.001	-0.003	-0.001	0.0003
$G_{\rm BCP}^{}/\rho_{\rm BCP}^{}$	0.800	0.875	0.878	0.842	0.769		0.185	0.185	0.902	0.821	0.927
$H_{\rm BCP}/\rho_{\rm BCP}$	0.100	-0.021	-0.020	-0.011	0.077		0.083	-0.019	-0.049	-0.037	0.007

 Table S3. Cartesian Coordinates and selected energetic data.

Η

C C 1.488399000 2.277461000

0.827964000

-0.390669000

2.377345000

1.943156000

1.430250000

0.236374000

0.744800000

		ТО	
_		TcO ₄ -	
Tc	0.000000000	0.000000000	0.00000000
0	0.978008000	0.978008000	0.978008000
0	-0.978008000	-0.978008000	0.978008000
0	-0.978008000	0.978008000	-0.978008000
O O	0.9/8008000	-0.9/8008000	-0.978008000
Sum of e	electronic and zero	-point Energies=	-4506.978295
Sum of o	electronic and the	rmal Energies=	-4506.973380
Sum of e	electronic and ther	mal Enthalpies=	-4506.972436
Sum of e	lectronic and theri	mal Free Energies	= -450/.00516/
		ReO ₄ -	
Re	0.000000000	0.000000000	0.00000000
0	1.003664000	1.003664000	1.003664000
О	-1.003664000	-1.003664000	1.003664000
0	-1.003664000	1.003664000	-1.003664000
0	1.003664000	-1.003664000	-1.003664000
Sum of e	electronic and zero	-point Energies=	-16046.105925
Sum of e	electronic and ther	mal Energies=	-16046.100252
Sum of e	electronic and ther	mal Enthalpies=	-16046.099307
Sum of el	lectronic and therr	nal Free Energies	-16046.134448
		SO4 ⁻²	
О	-0.406045000	1.325583000	-0.595377000
S	-0.000187000	-0.000046000	-0.000001000
0	0.850969000	0.237604000	1.223218000
0	0.790358000	-0.787168000	-1.016160000
О	-1.234907000	-0.775926000	0.388321000
Sum of elect	tronic and zero	-point Energie	s = -699.234671
Sum of elec	tronic and ther	mal Energies=	-699 230601
Sum of clea	trania and them	mai Enthelmier	- 600 220657
Sum of elec	tronic and theri	nai Enmaiples	099.229037
Sum of elect	ronic and thern	hal Free Energ	-699.262175
		NO ₃ -	
0	1.131264000	0.539553000	0.000014000
Ν	-0.000020000	0.000043000	-0.000049000
0	-0.098273000	-1.249340000	0.000014000
0	-1.032974000	0.709750000	0.000014000
Sum of elect	tronic and zero	-point Energies	s= -280.370253
Sum of elec	tronic and ther	mal Energies=	-280.367112
Sum of elec	tronic and there	nal Enthalnies	- 280.366168
Sulli of elec			280.300108
Sum of elect	ronic and thern	hal Free Energ	-280.395/28
	[Ph]	$\mathbf{NH}_{3}]^{+}[\mathbf{TcO}_{4}]^{-}$	
Tc	-1.939572000	-0.097783000	-0.076819000
О	-3.519822000	0.440459000	0.186960000
0	-1.897693000	-1.147288000	-1.400363000
0	-0.920950000	1.239701000	-0.401361000
0	-1.389706000	-0.912572000	1.299167000
Ν	1.525912000	2.006164000	0.443679000
Н	0.542083000	1.802578000	0.126194000
Н	1.863650000	2.818314000	-0.077834000

Н	1.001709000	-0.468503000	1.281900000
С	3.566195000	0.955810000	-0.467958000
H	3.882108000	1.917998000	-0.860426000
C	3 940684000	-1 412086000	-0 158435000
Ĥ	4 555068000	-2 293382000	-0 313764000
C II	2 739141000	-1 515589000	0.543249000
н	2.757141000	-2 474854000	0.933790000
C II	4 352294000	0 170575000	0.555750000
с ц	4.332234000	-0.1/95/5000	-0.002490000
II Sum of ol	J.20401/000	-0.093017000	-1.211081000
Sum of of	lootronic and the	-point Energies-	-4/94.010040
Sum of al	ectionic and the	mal Energies-	-4/94.000040
Sum of el	ectronic and them	mai Enuiaipies–	-4/94.603904
Sum of ele			-4/94.838400
	[Ph]		0.000001000
Re	-1.6/65/9000	-0.056392000	-0.000931000
0	-3.149412000	0.828808000	0.188166000
0	-1.850219000	-1.154550000	-1.329459000
0	-0.354721000	1.062125000	-0.277121000
0	-1.355143000	-0.942398000	1.450411000
Ν	2.132272000	1.963560000	-0.016760000
Н	1.124345000	1.679022000	-0.154141000
Н	2.379009000	2.616630000	-0.764483000
Н	2.187277000	2.482579000	0.863899000
С	3.015260000	0.788594000	-0.005727000
С	2.443036000	-0.476609000	-0.006673000
Н	1.366549000	-0.584846000	-0.006642000
С	4.391776000	0.978230000	0.003764000
Н	4.814118000	1.978821000	0.008550000
С	4.669128000	-1.422243000	0.001794000
Н	5.318870000	-2.291789000	0.001199000
С	3.285362000	-1.586985000	-0.006331000
H	2.851628000	-2.581503000	-0.013389000
C	5 221030000	-0 140656000	0.009536000
H	6.298101000	-0.008288000	0.018027000
Sum of el	ectronic and zero	-point Energies=	-16333.949091
Sum of el	ectronic and ther	mal Energies=	-16333.937637
Sum of el	ectronic and ther	mal Enthalpies=	-16333.936692
Sum of ele	ctronic and therr	nal Free Energies	= -16333.988123
	[Ph]	$NH_{2} ^{+}[SO_{4}]^{-2}$	
0	2 127118000	-1 619309000	-0.000513000
S	2.12/110000	-0.148985000	0.000313000
0	1 763888000	0.190705000	1 226027000
0	2 871866000	0.464463000	-1.220937000
0	3.8/1800000	0.123018000	1.227552000
U N	1./03434000	0.483535000	1.22/333000
N C	-0.390/49000	1.488807000	-0.000322000
C	-1.5/6108000	0.041304000	-0.000139000
C	-2.841885000	1.212183000	0.000168000
C	-3.95/84/000	0.3/3852000	0.000263000
C	-5./9/04/000	-1.008366000	0.000098000
C	-2.516204000	-1.561693000	-0.000215000
C	-1.393098000	-0.738173000	-0.000301000
H	0.262204000	1.260330000	-0.793248000
H	0.261669000	1.261502000	0.793172000
H	-0.611859000	2.484407000	-0.001267000
Н	-2.964191000	2.291548000	0.000211000

н	-4 951863000	0.811786000	0 000459000
Н	-4 668489000	-1 655802000	0.000195000
И	2 387503000	2 639611000	0.000372000
II U	-2.387303000	1 158074000	0.000571000
Sum of alact	-0.389870000	-1.138074000	-0.000371000
Sum of close	romic and then	-point Energie	S = -907.092719
Sum of elect	ronic and ther	mai Energies-	-987.081413
Sum of elect	ronic and there	mal Enthalpies	-987.080470
Sum of electr	onic and thern	nal Free Energ	ies= -987.133131
	[Ph	$NH_{3}]^{+}[NO_{3}]^{-}$	
Ν	0.063844000	1.500760000	0.514575000
С	-1.078256000	0.621145000	0.247934000
С	-0.900601000	-0.747994000	0.408290000
С	-1.975597000	-1.594494000	0.150632000
С	-3.199887000	-1.069798000	-0.264426000
С	-3.353351000	0.306074000	-0.422737000
С	-2.285706000	1.165527000	-0.165783000
Н	-0.149669000	2.477854000	0.305208000
Н	0.909054000	1.209862000	-0.058735000
Н	0.060058000	-1.139424000	0.730534000
Н	-1.853362000	-2.665870000	0.273150000
Н	-4.034249000	-1.734584000	-0.464835000
Н	-4.303880000	0.717572000	-0.746502000
Н	-2.401117000	2.238688000	-0.287106000
Н	0.353292000	1.455349000	1.495223000
0	2.421150000	-0.343445000	1.022888000
Ν	2.840817000	-0.175690000	-0.141462000
0	2.202130000	0.602591000	-0.917587000
0	3.857675000	-0.748858000	-0.553075000
Sum of elect	ronic and zero	-point Energie	s= -568.214924
Sum of elect	ronic and ther	mal Energies=	-568.204435
Sum of elect	ronic and ther	nal Enthalpies	-568.203491
Sum of electr	onic and thern	nal Free Energ	ies= -568.254389
	[PhNH ₂ (CH ₂ PvHl ²⁺ ITc	O4]-
Tc	-2.429357000	-0.977751000	-0.035167000
0	-0.758584000	-1.394904000	-0.114233000
0	-3.016405000	-1.325053000	1.508845000
0	-2.588996000	0.680039000	-0.328527000
0	-3.308558000	-1.852446000	-1.183979000
Ν	1.107834000	0.931458000	-0.452159000
С	0.831855000		
С	0.051055000	2.3/0060000	-0.264437000
С	-0.315092000	2.370060000 2.762348000	-0.264437000 0.407882000
	-0.315092000 -0.524811000	2.370060000 2.762348000 4.124609000	-0.264437000 0.407882000 0.608482000
С	-0.315092000 -0.524811000 0.398629000	2.370060000 2.762348000 4.124609000 5.057274000	-0.264437000 0.407882000 0.608482000 0.142104000
C C	-0.315092000 -0.524811000 0.398629000 1.544832000	$\begin{array}{c} 2.370060000\\ 2.762348000\\ 4.124609000\\ 5.057274000\\ 4.634563000\end{array}$	-0.264437000 0.407882000 0.608482000 0.142104000 -0.528663000
C C C	$\begin{array}{c} -0.315092000\\ -0.524811000\\ 0.398629000\\ 1.544832000\\ 1.771297000 \end{array}$	$\begin{array}{c} 2.370060000\\ 2.762348000\\ 4.124609000\\ 5.057274000\\ 4.634563000\\ 3.277440000\end{array}$	-0.264437000 0.407882000 0.608482000 0.142104000 -0.528663000 -0.735065000
C C C C	$\begin{array}{c} -0.315092000\\ -0.524811000\\ 0.398629000\\ 1.544832000\\ 1.771297000\\ 1.824061000 \end{array}$	$\begin{array}{c} 2.370060000\\ 2.762348000\\ 4.124609000\\ 5.057274000\\ 4.634563000\\ 3.277440000\\ 0.321873000 \end{array}$	-0.264437000 0.407882000 0.608482000 0.142104000 -0.528663000 -0.735065000 0.731205000
C C C C C	$\begin{array}{c} -0.315092000\\ -0.524811000\\ 0.398629000\\ 1.544832000\\ 1.771297000\\ 1.824061000\\ 2.559176000 \end{array}$	$\begin{array}{c} 2.370060000\\ 2.762348000\\ 4.124609000\\ 5.057274000\\ 4.634563000\\ 3.277440000\\ 0.321873000\\ -0.941667000 \end{array}$	-0.264437000 0.407882000 0.608482000 0.142104000 -0.528663000 -0.735065000 0.731205000 0.377063000
C C C C C C	$\begin{array}{c} -0.31505000\\ -0.315092000\\ -0.524811000\\ 0.398629000\\ 1.544832000\\ 1.771297000\\ 1.824061000\\ 2.559176000\\ 3.936190000\end{array}$	$\begin{array}{c} 2.370060000\\ 2.762348000\\ 4.124609000\\ 5.057274000\\ 4.634563000\\ 3.277440000\\ 0.321873000\\ -0.941667000\\ -1.038188000 \end{array}$	-0.264437000 0.407882000 0.608482000 0.142104000 -0.528663000 -0.735065000 0.731205000 0.377063000 0.401595000
C C C C C C C	$\begin{array}{c} -0.3150500\\ -0.315092000\\ -0.524811000\\ 0.398629000\\ 1.544832000\\ 1.771297000\\ 1.824061000\\ 2.559176000\\ 3.936190000\\ 2.381437000 \end{array}$	$\begin{array}{c} 2.370060000\\ 2.762348000\\ 4.124609000\\ 5.057274000\\ 4.634563000\\ 3.277440000\\ 0.321873000\\ -0.941667000\\ -1.038188000\\ -3.217561000 \end{array}$	-0.264437000 0.407882000 0.608482000 0.142104000 -0.528663000 -0.735065000 0.731205000 0.377063000 0.401595000 -0.245567000
C C C C C C C C C	$\begin{array}{c} -0.3150500\\ -0.315092000\\ -0.524811000\\ 0.398629000\\ 1.544832000\\ 1.771297000\\ 1.824061000\\ 2.559176000\\ 3.936190000\\ 2.381437000\\ 4.539535000 \end{array}$	$\begin{array}{c} 2.370060000\\ 2.762348000\\ 4.124609000\\ 5.057274000\\ 4.634563000\\ 3.277440000\\ 0.321873000\\ -0.941667000\\ -1.038188000\\ -3.217561000\\ -2.261721000\\ \end{array}$	-0.264437000 0.407882000 0.608482000 0.142104000 -0.528663000 -0.735065000 0.731205000 0.377063000 0.401595000 -0.245567000 0.106084000
C C C C C C C C C C C	$\begin{array}{c} -0.3150500\\ -0.315092000\\ -0.524811000\\ 0.398629000\\ 1.544832000\\ 1.771297000\\ 1.824061000\\ 2.559176000\\ 3.936190000\\ 2.381437000\\ 4.539535000\\ 3.757210000\\ \end{array}$	$\begin{array}{c} 2.370060000\\ 2.762348000\\ 4.124609000\\ 5.057274000\\ 4.634563000\\ 3.277440000\\ 0.321873000\\ -0.941667000\\ -1.038188000\\ -3.217561000\\ -2.261721000\\ -3.362882000 \end{array}$	-0.264437000 0.407882000 0.608482000 0.142104000 -0.528663000 -0.735065000 0.731205000 0.377063000 0.401595000 -0.245567000 0.106084000 -0.218256000
C C C C C C C C C N	$\begin{array}{c} -0.3150500\\ -0.315092000\\ -0.524811000\\ 0.398629000\\ 1.544832000\\ 1.771297000\\ 1.824061000\\ 2.559176000\\ 3.936190000\\ 2.381437000\\ 4.539535000\\ 3.757210000\\ 1.833112000 \end{array}$	$\begin{array}{c} 2.370060000\\ 2.762348000\\ 4.124609000\\ 5.057274000\\ 4.634563000\\ 3.277440000\\ 0.321873000\\ -0.941667000\\ -1.038188000\\ -3.217561000\\ -2.261721000\\ -3.362882000\\ -2.034165000\end{array}$	-0.264437000 0.407882000 0.608482000 0.142104000 -0.528663000 -0.735065000 0.731205000 0.377063000 0.401595000 -0.245567000 0.106084000 -0.218256000 0.051900000
C C C C C C C C C C N H	$\begin{array}{c} -0.315092000\\ -0.315092000\\ -0.524811000\\ 0.398629000\\ 1.544832000\\ 1.771297000\\ 1.824061000\\ 2.559176000\\ 3.936190000\\ 2.381437000\\ 4.539535000\\ 3.757210000\\ 1.833112000\\ 1.665232000 \end{array}$	$\begin{array}{c} 2.370060000\\ 2.762348000\\ 4.124609000\\ 5.057274000\\ 4.634563000\\ 3.277440000\\ 0.321873000\\ -0.941667000\\ -1.038188000\\ -3.217561000\\ -2.261721000\\ -3.362882000\\ -2.034165000\\ 0.809555000 \end{array}$	-0.264437000 0.407882000 0.608482000 0.142104000 -0.528663000 -0.735065000 0.731205000 0.377063000 0.401595000 -0.245567000 0.106084000 -0.218256000 0.051900000 -1.303938000

Н	-1.045015000	2.036874000	0.751854000		
Н	-1.420604000	4.452709000	1.124729000		
Н	0.223936000	6.116562000	0.298899000		
Н	2.264931000	5.357944000	-0.895231000		
Н	2.662653000	2.939394000	-1.254619000		
Н	1.067022000	0.146413000	1.496300000		
Н	2.530370000	1.064310000	1.097531000		
Н	4.531587000	-0.171441000	0.660965000		
Н	1.696847000	-4.017530000	-0.494030000		
Н	5.619706000	-2.347808000	0.131649000		
Н	4.198696000	-4.323272000	-0.450952000		
Н	0.799591000	-1.922295000	0.006605000		
Sum of electronic and zero-point Energies= -5081.45906					
Sum of electr	onic and there	mal Energies=	-5081.441674		

Sum of electronic and thermal Energies=-5081.441674Sum of electronic and thermal Enthalpies=-5081.440730Sum of electronic and thermal Free Energies=-5081.507018

[PhNH₂CH₂PyH]²⁺[ReO₄]⁻

	_
symmetry	c1

	Re	-2.143243000	-0.475260000	-0.018616000	
	0	-0.387795000	-0.903551000	0.169017000	
	0	-2.943220000	-1.042978000	1.457740000	
	0	-2.069600000	1.314657000	-0.098951000	
	0	-3.044599000	-1.118812000	-1.405012000	
	Ν	1.803929000	0.828999000	-0.536358000	
	С	1.608915000	2.271124000	-0.313241000	
	С	0.359865000	2.704858000	0.138609000	
	С	0.190063000	4.063783000	0.401707000	
	С	1.267762000	4.944949000	0.224212000	
	С	2.511729000	4.493050000	-0.242566000	
	С	2.698336000	3.136814000	-0.519586000	
	С	2.586122000	0.204924000	0.601648000	
	С	2.943455000	-1.233624000	0.307021000	
	С	4.252162000	-1.701513000	0.283401000	
	С	2.108904000	-3.392173000	-0.159584000	
	С	4.472358000	-3.058377000	0.023304000	
	С	3.402634000	-3.908230000	-0.205405000	
	Ν	1.931386000	-2.098925000	0.101935000	
	Н	2.267882000	0.645185000	-1.433514000	
	Н	0.869993000	0.357062000	-0.570687000	
	Н	-0.489386000	2.005532000	0.196698000	
	Н	-0.792707000	4.414211000	0.757955000	
	Η	1.134028000	6.002920000	0.449887000	
	Н	3.345346000	5.194184000	-0.395357000	
	Н	3.667696000	2.777508000	-0.888542000	
	Η	1.959221000	0.279061000	1.497499000	
	Н	3.495457000	0.798719000	0.764804000	
	Н	5.079768000	-1.016379000	0.445638000	
	Η	1.214447000	-3.985524000	-0.322726000	
	Н	5.487726000	-3.426114000	-0.003091000	
	Η	3.548594000	-4.965386000	-0.408599000	
	Н	0.955843000	-1.695027000	0.127721000	
Sum of e	lectro	nic and zero-	point Energies	-16620.573492	
Sum of e	electro	onic and thern	nal Energies=	-16620.556287	
Sum of electronic and thermal Enthalpies= -16620.555343					

22

Sum of electronic and thermal Free Energies=	-16620.619921
[PhNH ₂ CH ₂ PyH] ²⁺ [SO ₄] ⁻²	

S	-0.886606000	2.454862000	-0.221414000
0	-0.483942000	1.438967000	0.891735000
Ο	-2.376958000	2.443330000	-0.290194000
0	-0.351932000	3.790020000	0.150128000
Ο	-0.273411000	1.937482000	-1.485281000
Ν	0.784361000	-0.581107000	-0.242310000
С	2.244986000	-0.584497000	-0.119927000
С	2.818886000	0.158841000	0.903783000
С	4.204785000	0.141808000	1.044209000
С	4.988276000	-0.608276000	0.168370000
С	4.390645000	-1.344868000	-0.854135000
С	3.005870000	-1.339609000	-1.003688000
С	0.134294000	-1.713577000	0.493493000
С	-1.359172000	-1.764214000	0.287584000
С	-2.011286000	-2.910790000	-0.128969000
С	-3.419693000	-0.611351000	0.417978000
С	-3.401034000	-2.899086000	-0.257359000
С	-4.115889000	-1.737930000	0.016552000
Ν	-2.088627000	-0.660874000	0.555545000
Η	0.509650000	-0.584136000	-1.229059000
Η	0.395322000	0.334908000	0.155179000
Η	2.196430000	0.745911000	1.572839000
Η	4.669344000	0.719293000	1.836771000
Η	6.067887000	-0.616679000	0.280425000
Η	5.000363000	-1.925003000	-1.539065000
Η	2.533713000	-1.911047000	-1.797822000
Η	0.372735000	-1.578652000	1.551643000
Η	0.583625000	-2.645576000	0.152153000
Η	-1.440265000	-3.804217000	-0.352031000
Η	-3.878158000	0.346913000	0.626317000
Η	-3.918361000	-3.795345000	-0.581579000
Н	-5.192808000	-1.696258000	-0.086781000
Η	-1.577980000	0.228849000	0.822518000

[PhNH ₂ CH ₂ PyH] ²⁺ [NO ₃] ⁻	
Sum of electronic and thermal Free Energies=	-1273.793867
Sum of electronic and thermal Enthalpies=	-1273.728939
Sum of electronic and thermal Energies=	-1273.729883
Sum of electronic and zero-point Energies=	-1273.746611

	L –		- 1
Ν	0.544237000	-0.573804000	-0.569138000
С	1.989301000	-0.702724000	-0.312465000
С	2.697245000	0.427476000	0.071416000
С	4.057041000	0.291396000	0.345361000
С	4.675909000	-0.952309000	0.233114000
С	3.940540000	-2.071819000	-0.156695000
С	2.581062000	-1.953657000	-0.432687000
С	-0.288755000	-0.914892000	0.637936000
С	-1.758794000	-1.032490000	0.327210000
С	-2.450168000	-2.220190000	0.475118000
С	-3.749171000	0.066614000	-0.330429000
С	-3.822792000	-2.252808000	0.221584000
С	-4.481742000	-1.098262000	-0.183748000
Ν	-2.434877000	0.068442000	-0.070010000

Н	0.278049000	-1.167559000	-1.360275000
Н	0.325032000	0.413238000	-0.837357000
Н	2.205851000	1.394855000	0.146872000
Н	4.630350000	1.163061000	0.643513000
Н	5.735449000	-1.050286000	0.447210000
Н	4.422588000	-3.039436000	-0.248511000
Н	2.000342000	-2.819767000	-0.736712000
Н	-0.096537000	-0.135830000	1.378608000
Н	0.075318000	-1.863747000	1.029484000
Н	-1.922643000	-3.112619000	0.789432000
Н	-4.175381000	1.008330000	-0.651297000
Н	-4.369574000	-3.181616000	0.339963000
Н	-5.544508000	-1.092502000	-0.389702000
Н	-1.897457000	0.950280000	-0.224521000
0	-1.178467000	3.539130000	0.569658000
Ν	-0.276318000	2.941802000	-0.022983000
0	-0.583774000	1.915628000	-0.737204000
0	0.907713000	3.290307000	0.034285000
Sum of electronic and zero-point Energies= -854.858047			
Sum of electronic and thermal Energies= -854.842371			
Sum of electr	onic and therr	nal Enthalpies	-854.841427
Sum of electro	onic and therm	nal Free Energ	ies= -854.904093

References (for computational details)

- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.;Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada,M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.;Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.;Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.;Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.;Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2010.
- (2) J.-D. Chai and M. Head-Gordon, J. Chem. Phys., 128, 2008, 084106.
- (3) P. J. P. de Oliveira, C. L. Barros, F. E. Jorge, A. Canal Neto, and M. Campos, *J. Mol. Struct. (Theochem)*, 43, 2010, 948.
- (4) A. Canal Neto and F. E. Jorge, *Chem. Phys. Let.*, 158, 2013, 582.
- (5) J. Tomasi, B. Mennucci, R. Cammi, *Chem. Rev. 105*, **2005**, 2999.
- (6) A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 88, 1988, 899.
- (7) F. Weinhold, *In The Encyclopedia of Computational Chemistry*; Schleyer, P. v. R., Ed.;
 John Wiley & Sons: Chichester, **1998**; pp 1792–1811.
- (8) T. Lu, F. Chen, Multiwfn: A Multifunctional Wavefunction Analyzer, J. Comp. Chem.
 33, 580-592 (2012).

(9) R. F. W. Bader (1990) Atoms in molecules—a quantum theory. Oxford University Press, Oxford.

- (10) R. F. W. Bader (1998) J Phys Chem A 102, 7314.
- (11) E. Espinosa, I. Alkorta, J. Elguero, E. Molins E (2002) J Chem Phys 117, 5529.

Figure S15. PXRD patterns of MOR-1 (experimental and calculated) and MOR-1/ReO4⁻.

Figure S16. PXRD patterns of MOR-2 and MOR-2/ReO4⁻.

Figure S17. IR spectra of MOR-1 and MOR-1 /ReO4⁻.

Figure S18. IR spectra of MOR-2 and MOR-2 /ReO4.

Figure S19. EDS data for the ReO₄⁻-loaded materials. According to ReO₄⁻ sorption data for **MOR-1** (see main text), there is partial exchange of Cl⁻ by Re(VII) species and this is confirmed by the EDS data for **MOR-1/ReO₄**⁻ indicating the existence of both Re and Cl. However, the ReO₄⁻ sorption data for **MOR-2** indicate complete exchange of guest Cl⁻ by ReO₄⁻ anions. Thus, the chloride found from the EDS data for **MOR-2/ReO₄**⁻ is likely attributed to Cl⁻ interacting

strongly with surface ammonium/pyridinium functional groups of **MOR-2** (i.e. Cl⁻ anions are located in the external surface of **MOR-2** particles).

Figure S20. Nitrogen sorption isotherm at 77 K for MOR-1 and MOR-1/ReO4⁻.

Crystal structure solution and Rietveld refinement for MOR-1/ReO4-

The X-ray powder diffraction pattern for **MOR-1** loaded with ReO₄⁻ was indexed with TREOR (*Fm-3m*, a = 20.7873 Å) implemented in EXPO2014 (A. Altomare, C. Cuocci, C. Giacovazzo, A. Moliterni, R. Rizzi, N. Corriero and A. Falcicchio, *J. Appl. Cryst.* (2013), **46**, 1231) to give the expected cubic unit cell. Attempts to solve the structure with direct methods resulted in the familiar Zr₆O₈ core and diffuse electron density in the cell. An interesting characteristic of the maps systematically produced is a relatively high intensity peak above a triangular face of the Zr₆O₈ octahedron at close proximity to the μ_3 –O atom. This peak was assigned to Re, and a tetrahedron ReO₄ was built. Additionally, the aminoterephthalate ligand was built in agreement to previously reported structures (see for example C.A.Trickett, K.J.Gagnon, Seungkyu Lee, F.Gandara, H.-B.Burgi, O.M.Yaghi, *Angew.Chem ,Int.Ed.* (2015), **54**, 11162) and a free chloride anion was added in the structure. The occupancies of the Zr, μ_3 –O, and terephthalate atoms were

assigned according to the *Fm-3m* space group demands while the occupancies of the perrhenate and chloride atoms were assigned according to analytical data. The final formula used was $\{[Zr_6O_4(OH)_4(C_8H_6NO_4)_6](ReO_4)_4Cl_2\}_n$. The structure was solved with simulated annealing methods allowing ReO₄⁻ to rotate about Re atom and Cl⁻ free to move. The final Rietveld plot is presented in Fig. S21. CIF data are given below.

Figure S21. The final Rietveld plot for MOR-1/ReO4-.

CIF data for MOR-1/ReO4

_audit_creation_method Expo2014 _chemical_name_systematic ? _chemical_formula_moiety 'Re4 Zr6 Cl2 O48 N6 C48' _chemical_formula_sum 'Re4 Zr6 Cl2 O48 N6 C48' _chemical_formula_weight 2831.92 loop_

_atom_type_symbol _atom_type_description _atom_type_scat_source 'C' 'Carbon' 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'Nitrogen' 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'O' 'Oxygen' 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Cl' 'Chlorine' 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Zr' 'Zirconium' 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Re' 'Rhenium' 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_cell_length_a	20.78730
_cell_length_b	20.78730
_cell_length_c	20.78730
_cell_angle_alpha	90.000
_cell_angle_beta	90.000
_cell_angle_gamma	90.000
_cell_volume	8982.438
cell formula units Z	4
_cell_measurement_ten	nperature ?
	-

_exptl_crystal_density_diffrn 2.094 _exptl_crystal_density_meas ? _exptl_crystal_density_method 'not measured' _symmetry_Int_Tables_number 225 _symmetry_cell_setting cubic _symmetry_space_group_name_H-M 'F m -3 m' _symmetry_space_group_name_hall '-F 4 2 3'

loop_

_symmetry_equiv_pos_site_id _symmetry_equiv_pos_as_xyz 1 'x, y, z' 2 '-y, x, z' 3 '-x, -y, z' 4 'y, -x, z' 5 'x, -y, -z' 6 'y, x, -z' 7 '-x, y, -z' 8 '-y, -x, -z' 9 'z, x, y' 10 '-x, z, y' 11 '-z, -x, y' 12 'x, -z, y' 13 'z, -x, -y'

14	'x, z, -y'
15	'-Z. XV'
16	'- X - 7 - V '
17	-x, -z, -y
1/	y, z, x
18	'y, -z, -x'
19	'z, y, -x'
20	'-y, z, -x'
21	'-ZVX'
$\frac{1}{22}$	'_V _7 v '
22	-y, -z, x
23	Z, -y, X
24	'-Z, Y, X'
25	'-x, -y, -z'
26	'y, -x, -z'
27	'x, y, -z'
28	'-V, X, -Z'
29	'-X. V. Z'
30	'-V -X Z'
31	y, <u>x</u> , <u>z</u>
22	x, -y, Z
5Z	y, x, Z
33	'-Z, -X, -Y
34	'x, -z, -y'
35	'z, x, -y'
36	'-x, z, -y'
37	'-Z, X, Y'
38	'-X, -Z, V'
39	'ZX. V'
40	x^{2}, x^{2}, y^{2}
40 Λ1	X, Z, Y
12	-y, -z, -x
42	-y, Z, X
43	-Z, -Y, X
44	'y, -z, x'
45	'Z, Y, X'
46	'y, z, -x'
47	'-z, y, -x'
48	'z, -y, -x'
49	'x, y+1/2, z+1/2'
50	'-y, x+1/2, z+1/2'
51	'-x, -v+1/2, z+1/2'
52	'v. $-x+1/2$, $z+1/2$ '
53	'x $-v+1/2$ $-z+1/2'$
57	x, -y + 1/2, -z + 1/2
55	y, x + 1/2, -2 + 1/2
55	-x, y+1/2, -2+1/2'
56	-y, -x+1/2, -z+1/2'
57	'z, $x+1/2$, $y+1/2$ '
58	'-x, z+1/2, y+1/2'
59	'-z, -x+1/2, y+1/2'

60	'x, -z+1/2, y+1/2'
61	'z. $-x+1/2$. $-v+1/2$ '
62	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
62	x, z + 1/2, -y + 1/2
03	-Z, X+1/2, -y+1/2
64	-x, -z+1/2, -y+1/2'
65	'y, z+1/2, x+1/2'
66	'y, -z+1/2, -x+1/2'
67	'z. $v+1/2$. $-x+1/2$ '
68	-2, y = 1/2, x = 1/2
60	y, z + 1/2, -x + 1/2
09	-z, -y+1/2, -x+1/2
/0	-y, -z+1/2, x+1/2'
71	z, -y+1/2, x+1/2
72	'-z, y+1/2, x+1/2'
73	'-x, -y+1/2, -z+1/2'
74	'y, -x+1/2, -z+1/2'
75	'x, y+1/2, -z+1/2'
76	'-v, x+1/2, -z+1/2'
77	'-x, y+1/2, z+1/2'
78	'-v. $-x+1/2$. $z+1/2$ '
79	'x $-v+1/2$ $z+1/2'$
80	'v $x+1/2$ $z+1/2'$
81	y, x + 1/2, z + 1/2 - $y + 1/2 - y + 1/2'$
82	$x_{-z+1/2} = y+1/2$
83	x, -z + 1/2, -y + 1/2
84	z, x + 1/2, -y + 1/2
85	x, z + 1/2, -y + 1/2
85	-2, x + 1/2, y + 1/2
80 97	-x, -z+1/2, y+1/2
0/	Z, -X+1/2, y+1/2
88	X, Z+1/2, Y+1/2
89	y, -z+1/2, -x+1/2
90	y, z+1/2, x+1/2
91	-z, -y+1/2, x+1/2
92	'y, $-z+1/2$, $x+1/2$ '
93	'z, y+1/2, x+1/2'
94	'y, z+1/2, -x+1/2'
95	-z, y+1/2, -x+1/2'
96	z, -y+1/2, -x+1/2'
97	'x+1/2, y, z+1/2'
98	'-y+1/2, x, z+1/2'
99	'-x+1/2, -y, z+1/2'
100	'y+1/2, -x, z+1/2'
101	'x+1/2, -y, -z+1/2'
102	'y+1/2, x, -z+1/2'
103	'-x+1/2, y, -z+1/2'
104	'-y+1/2, -x, -z+1/2'
105	'z+1/2, x, y+1/2'
	, , , ,

106	'-x+1/2, z, y+1/2'
107	-z+1/2 -x $v+1/2'$
108	$\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$
100	x + 1/2, -2, y + 1/2
109	(z+1/2, -x, -y+1/2)
110	x+1/2, z, -y+1/2'
111	'-z+1/2, x, -y+1/2'
112	'-x+1/2, -z, -v+1/2'
113	v+1/2 z $v+1/2'$
117	y + 1/2, 2, x + 1/2 y + 1/2, z + 1/2'
114	y + 1/2, -2, -x + 1/2
115	(z+1/2, y, -x+1/2)
116	-y+1/2, z, -x+1/2'
117	'-z+1/2, -y, -x+1/2'
118	'-y+1/2, -z, x+1/2'
119	z+1/2, -v, $x+1/2$
120	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$
120	-Z + 1/2, y, x + 1/2
121	-x+1/2, -y, -z+1/2
122	y+1/2, -x, -z+1/2'
123	'x+1/2, y, -z+1/2'
124	'-y+1/2, x, -z+1/2'
125	'-x+1/2, y, z+1/2'
126	'-v+1/2, -x, z+1/2'
127	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$
127	x + 1/2, -y, z + 1/2 y + 1/2, x - z + 1/2
120	y = 1/2, x, z = 1/2
129	-Z+1/2, -X, -Y+1/2
130	x+1/2, -z, -y+1/2'
131	z+1/2, x, -y+1/2'
132	'-x+1/2, z, -y+1/2'
133	'-z+1/2, x, y+1/2'
134	'-x+1/2, -z, y+1/2'
135	z+1/2, -x, $y+1/2'$
136	x+1/2 z $x+1/2'$
137	x + 1/2, z, y + 1/2 y + 1/2 = z + 1/2'
129	-y + 1/2, -2, -x + 1/2
120	-y + 1/2, Z, X + 1/2
139	-Z+1/2, -y, X+1/2
140	y+1/2, -z, x+1/2'
141	'z+1/2, y, x+1/2'
142	'y+1/2, z, -x+1/2'
143	'-z+1/2, y, -x+1/2'
144	'z+1/2, -v, -x+1/2'
145	x+1/2 $x+1/2$ z'
1/6	x + 1/2, y + 1/2, z
1/7	y + 1/2, x + 1/2, Z $y + 1/2, x \pm 1/2, z$
14/	$-x \pm 1/2, -y \pm 1/2, Z$
148	y+1/2, -x+1/2, z'
149	x+1/2, -y+1/2, -z'
150	'y+1/2, x+1/2, -z'
151	'-x+1/2, y+1/2, -z'
	-

152	'-y+1/2, -x+1/2, -z'
153	'z+1/2, x+1/2, y'
154	'-x+1/2, z+1/2, y'
155	'-z+1/2, -x+1/2, y'
156	'x+1/2, -z+1/2, y'
157	'z+1/2, -x+1/2, -y'
158	'x+1/2, z+1/2, -y'
159	'-z+1/2, x+1/2, -y'
160	'-x+1/2, -z+1/2, -y'
161	'y+1/2, z+1/2, x'
162	'y+1/2, -z+1/2, -x'
163	'z+1/2, y+1/2, -x'
164	'-y+1/2, z+1/2, -x'
165	'-z+1/2, -y+1/2, -x'
166	'-y+1/2, -z+1/2, x'
167	'z+1/2, -y+1/2, x'
168	'-z+1/2, y+1/2, x'
169	'-x+1/2, -y+1/2, -z'
170	'y+1/2, -x+1/2, -z'
171	'x+1/2, y+1/2, -z'
172	'-y+1/2, x+1/2, -z'
173	'-x+1/2, y+1/2, z'
174	'-y+1/2, -x+1/2, z'
175	'x+1/2, -y+1/2, z'
176	'y+1/2, x+1/2, z'
177	'-z+1/2, -x+1/2, -y'
178	'x+1/2, -z+1/2, -y'
179	'z+1/2, x+1/2, -y'
180	'-x+1/2, z+1/2, -y'
181	'-z+1/2, x+1/2, y'
182	-x+1/2, -z+1/2, y'
183	'z+1/2, -x+1/2, y'
184	'x+1/2, z+1/2, y'
185	'-y+1/2, -z+1/2, -x'
186	'-y+1/2, z+1/2, x'
187	'-z+1/2, -y+1/2, x'
188	'y+1/2, -z+1/2, x'
189	'z+1/2, y+1/2, x'
190	'y+1/2, z+1/2, -x'
191	'-z+1/2, y+1/2, -x'
192	'z+1/2, -y+1/2, -x'

loop_ _atom_site_type_symbol _atom_site_label _atom_site_fract_x

atom site fract y atom site fract z atom site U iso or equiv atom site occupancy atom site adp type Zr Zr 0.1205 0.0000 0.0000 0.0500 0.12500 Uiso 0.0628 0.0628 0.0628 0.0800 0.16667 Ο O2 Uiso Re Re1 0.1480 0.1480 0.1480 0.0800 0.08333 Uiso Ο 04 0.1960 0.1960 0.1960 0.1000 0.08333 Uiso 0 01 0.1805 0.0000 0.0848 0.0800 0.25000 Uiso С C3 0.2674 0.0000 0.1844 0.1000 0.50000 Uiso Ν 0.2842 0.0000 0.1217 0.1000 0.12500 Ν Uiso С C1 0.1536 0.0000 0.1536 0.1000 0.25000 Uiso С C2 0.2050 0.0000 0.2050 0.1000 0.25000 Uiso 0 03 0.2040 0.0919 0.0919 0.1000 0.25000 Uiso Cl C11 0.2875 0.1258 0.1258 0.1000 0.04167 Uiso

loop_

_geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 Zr O2 2.201114 . Zr O1 2.158924 . Re1 O4 1.727503 . Re1 O3 2.018182 . O1 C1 1.535209 . C3 N 1.349084 . C3 C2 1.367695 . C1 C2 1.510747 .

loop_

_geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 O2 Zr O1 80.25 .. Zr O1 C1 123.36 .. O4 Re1 O3 109.52 .. O1 C1 C2 113.64 .. N C3 C2 123.23 .. C3 C2 C1 116.76 ..

loop_

Figure S22. Nitrogen sorption isotherm at 77 K for MOR-2 and MOR-2 /ReO4⁻.

Crystal structure solution and Rietveld refinement for MOR-2/ReO4-

For **MOR-2/ReO**₄⁻ structure, three different models were built based on the known structure of **MOR-2** (reference 19 in main article) and the amount of sorbed Re content found experimentally (sorption isotherms) which led to a formulation $\{[Zr_6O_8(C_{14}H_{12}N_2O_4)_4](ReO_4)_8\}_n$: In all cases the coordinated water molecules from the equatorial sites and chloride counter ions were removed and replaced with (a) four chelated perrhenates on the equatorial Zr atoms of the eight connected

node and four perrhenates as counter ions in the cells empty space, (b) four ReO_4^- anions acting as bridging ligands on the Zr – Zr equatorial edges and again four perrhenates as counter ions in the cells empty space, and (c) eight unidentate perrhenates on the positions of the water molecules of the original structure. We attempted to solve the structures for all three models allowing the bond distances, angles and torsions related to the bonded perrhenates to vary, the anionic perrhenates free to move and, additionally, the torsions related to aminomethylpyridine moiety were also allowed to vary. The best solutions were obtained for the third model (c), and here is presented the one that gave the best Rietveld refinement results (Fig. S22 and Fig. 7 in main article). CIF data are given below.

Here, we do not claim that the structures presented are crystallographically perfectly correct, but chemically they represent realistic models of the interactions of perrhenates with the two MOR materials.

Figure S23. The final Rietveld plot for MOR-2/ReO4-.

CIF data for MOR-2/ReO₄-

_audit_creation_method

Expo2014

_chemical_name_systematic	?
_chemical_formula_moiety	'Re8 Zr6 O56 N8 C56'
_chemical_formula_sum	'Re8 Zr6 O56 N8 C56'
chemical formula weight	3766.00

loop_

_atom_type_symbol atom type description atom type scat source 'C' 'Carbon' 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'Nitrogen' 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'O' 'Oxygen' 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Zr' 'Zirconium' 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Re' 'Rhenium' 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' cell length a 14.69280 _cell_length b 14.69280 cell length c 20.87750 cell angle alpha 90.000 _cell_angle beta 90.000 _cell_angle_gamma 90.000 cell volume 4507.000

_cell_formula_units_Z 2

_cell_measurement_temperature ?

_exptl_crystal_density_diffrn 2.775 _exptl_crystal_density_meas ? _exptl_crystal_density_method 'not measured' _symmetry_Int_Tables_number 87 _symmetry_cell_setting tetragonal _symmetry_space_group_name_H-M 'I 4/m' _symmetry_space_group_name_hall '-I 4'

loop_

_symmetry_equiv_pos_site_id

_symmetry_equiv_pos_as_xyz

- 1 'x, y, z'
- 2 '-y, x, z'
- 3 '-x, -y, z'
- 4 'y, -x, z'
- 5 '-x, -y, -z' 6 'y, -x, -z'
- 0 y, -x, -z 7 'x, y, -z'
- 8 '-y, x, -z'
- 9 'x+1/2, y+1/2, z+1/2'
- 10 '-y+1/2, x+1/2, z+1/2'
- 11 '-x+1/2, -y+1/2, z+1/2'
- 12 'y+1/2, -x+1/2, z+1/2'
- 13 '-x+1/2, -y+1/2, -z+1/2'
- 14 'y+1/2, -x+1/2, -z+1/2'
- 15 'x+1/2, y+1/2, -z+1/2'
- 16 '-y+1/2, x+1/2, -z+1/2'

loop_

atom site type symbol atom site label atom site fract x atom site fract y atom site fract z atom site U iso or equiv atom site occupancy atom site adp type 01 $-0.0011\ 0.1324\ 0.0628\ 0.0050\ 1.0000$ Uiso 0 0 O2 0.1699 0.1699 0.0949 0.0800 1.0000 Uiso Ο O3 0.0950 0.0950 0.1697 0.0800 1.0000 Uiso С 0.1533 0.1533 0.1531 0.0800 1.0000 C1 Uiso С C2 0.2020 0.2020 0.2007 0.0800 1.0000 Uiso С C3 0.1969 0.1760 0.2649 0.0800 1.0000 Uiso С C4 0.2552 0.2762 0.1833 0.0800 1.0000 Uiso $0.2825\ 0.2982\ 0.1195\ 0.1000\ 0.50000$ Ν N1 Uiso С C5 0.3819 0.3040 0.1115 0.1000 0.50000 Uiso С 0.4313 0.2949 0.1749 0.1000 0.50000 Uiso C6 С C7 0.4487 0.3720 0.2086 0.1000 0.50000 Uiso Ν N2 0.4584 0.2109 0.2008 0.1000 0.50000 Uiso С 0.5025 0.2093 0.2598 0.1000 0.50000 C8 Uiso

С	C9	0.5201 0.2907 0.2931 0.1000 0.50000	Uiso
С	C10	$0.4915\ 0.3719\ 0.2658\ 0.1000\ 0.50000$	Uiso
Re	Re1	$0.1314\ 0.3680\ 0.0276\ 0.0800\ 0.50000$	Uiso
0	O15	$0.0441\ 0.4465\ 0.0315\ 0.1000\ 0.50000$	Uiso
0	O16	$0.0900\ 0.2646\ 0.0059\ 0.1000\ 0.50000$	Uiso
0	O17	$0.1841\ 0.3602\ 0.1021\ 0.1000\ 0.50000$	Uiso
0	O18	0.2103 0.4024 -0.0283 0.1000 0.50000	Uiso
Re	Re2	$-0.1224\ 0.3747\ 0.0142\ 0.0800\ 0.50000$	Uiso
0	05	-0.2103 0.4061 -0.0361 0.1000 0.50000	Uiso
0	O7	$-0.0297\ 0.4463\ 0.0017\ 0.1000\ 0.50000$	Uiso
0	08	$-0.1571\ 0.3841\ 0.0927\ 0.1000\ 0.50000$	Uiso
0	06	$-0.0918\ 0.2652\ 0.0000\ 0.1000\ 0.50000$	Uiso
Zr	Zr1	$0.1195\ 0.1195\ 0.0000\ 0.0500\ 0.50000$	Uiso
Zr	Zr2	0.0000 0.0000 0.1194 0.0500 0.25000	Uiso

loop_

_geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 O1 Zr1 2.213421. O1 Zr2 2.275945. O2 C1 1.262819. O2 Zr1 2.240653. O3 C1 1.259804. O3 Zr2 2.236410. C1 C2 1.418587. C2 C3 1.395051. C2 C4 1.390938. C4 N1 1.427875. N1 C5 1.473369. C5 C6 1.514764. C6 C7 1.357306. C6 N2 1.405153. C7 C10 1.349909. N2 C8 1.393615. C8 C9 1.406721. C9 C10 1.387791. Rel O15 1.726419. Rel O16 1.697958.

Re1 O17 1.741611 . Re1 O18 1.722478 . O16 Zr1 2.177979 . Re2 O5 1.726577 . Re2 O7 1.741608 . Re2 O8 1.722434 . Re2 O6 1.697370 .

loop_

_geom_angle_atom_site_label_1 _geom_angle_atom_site label 2 _geom_angle_atom_site_label 3 _geom_angle _geom_angle_site_symmetry 1 _geom_angle_site_symmetry_3 Zr1 O1 Zr2 103.22.. O1 Zr1 O2 73.31 . . O1 Zr1 O16 73.94 . . O1 Zr2 O3 73.44 . . C1 O2 Zr1 136.23.. O2 C1 O3 121.95... O2 C1 C2 118.61 . . O2 Zr1 O16 72.10.. C1 O3 Zr2 135.94 . . O3 C1 C2 119.45.. C1 C2 C3 120.58.. C1 C2 C4 119.71.. C3 C2 C4 119.70.. C2 C4 N1 125.39... C4 N1 C5 113.37 . . N1 C5 C6 111.80 . . C5 C6 C7 118.04 . . C5 C6 N2 123.26.. C7 C6 N2 118.69... C6 C7 C10 123.11.. C6 N2 C8 119.14 . . C7 C10 C9 120.30.. N2 C8 C9 120.52 . . C8 C9 C10 118.24.. O15 Re1 O16 110.16 . .

```
O15 Re1 O17 109.38 ...
O15 Re1 O18 109.65 ...
O16 Re1 O17 109.80 ...
O16 Re1 O18 108.86 ...
Re1 O16 Zr1 145.00 ...
O17 Re1 O18 108.96 ...
O5 Re2 O7 109.38 ...
O5 Re2 O8 109.65 ...
O5 Re2 O6 110.25 ...
O7 Re2 O6 109.83 ...
O8 Re2 O6 108.75 ...
```

loop_

_geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label 2 geom torsion atom site label 3 _geom_torsion_atom_site_label_4 _geom_torsion geom torsion site symmetry 1 geom torsion site symmetry 2 _geom_torsion_site_symmetry_3 geom torsion site symmetry 4 Zr2 O1 Zr1 O2 -83.03 Zr2 O1 Zr1 O16 -158.70 Zr1 O1 Zr2 O3 83.65 Zr1 O2 C1 O3 0.02 Zr1 O2 C1 C2 179.98 C1 O2 Zr1 O1 40.87 C1 O2 Zr1 O16 118.95 Zr2 O3 C1 O2 0.00 Zr2 O3 C1 C2 -180.00 C1 O3 Zr2 O1 -39.49 O2 C1 C2 C3 -169.59 O2 C1 C2 C4 10.40 O3 C1 C2 C3 10.41 O3 C1 C2 C4 -169.60 C1 C2 C4 N1 -14.45 C3 C2 C4 N1 165.54 C2 C4 N1 C5 -122.59

C4 N1 C5 C6 -6.04 N1 C5 C6 C7 -90.17 N1 C5 C6 N2 88.75 C5 C6 C7 C10 179.36 N2 C6 C7 C10 0.40 C5 C6 N2 C8 -179.21 C7 C6 N2 C8 -0.30 C6 C7 C10 C9 0.06 C6 N2 C8 C9 -0.23 N2 C8 C9 C10 0.67 C8 C9 C10 C7 -0.59 O15 Rel O16 Zr1 -165.75 O17 Re1 O16 Zr1 -45.22 O18 Re1 O16 Zr1 73.98 Rel O16 Zr1 O1 120.39 Rel O16 Zr1 O2 43.16

Figure S24. The charges of atoms in NO_3^- , SO_4^{2-} , ReO_4^- and TcO_4^- calculated via NBO analysis.

Figure S25. Calibration curve of the titration of an aqueous suspension of **MOR-2** (pH 5) with ReO₄⁻.

Figure S26. A. Blank experiment of an aqueous suspension of **MOR-2** (pH 5) with KCl, **B.** Titration of an aqueous suspension of **MOR-2** (pH 5) with ReO_4^- in the presence of a ten-fold excess of Cl⁻ anions, **C.** Calibration curve of the titration of an aqueous suspension of MOR-2 (pH 5) with ReO_4^- in the presence of a ten-fold excess of Cl⁻ anions (with respect to ReO_4^-).

Figure S27. A. Blank experiment of an aqueous suspension of **MOR-2** (pH 5) with NaNO₃, **B.** Titration of an aqueous suspension of **MOR-2** (pH 5) with ReO4^- in the presence of a ten-fold excess of NO3^- anions, **C.** Calibration curve of the titration of an aqueous suspension of **MOR-2** (pH 5) with ReO4^- in the presence of a ten-fold excess of NO3^- anions (with respect to ReO4^-).

Figure S28. A. Blank experiment of an aqueous suspension of **MOR-2** (pH 5) with Na₂SO₄, **B.** Titration of an aqueous suspension of **MOR-2** (pH 5) with ReO₄⁻ in the presence of a two-fold excess of SO₄⁻ anions, **C.** Calibration curve of the titration of an aqueous suspension of **MOR-2** (pH 5) with ReO₄⁻ in the presence of a two-fold excess of SO₄⁻ anions (with respect to ReO₄⁻).

Figure S29. A. Titration of an aqueous suspension of **MOR-2** (pH 5) with ReO₄⁻ in potable water, **B.** Calibration curve of the titration of an aqueous suspension of **MOR-2** (pH 5) with ReO₄⁻ in potable water.

Figure S30. Calibration curve of the titration of an aqueous suspension of MOR-1 (pH 5) with ReO₄⁻.

Figure S31. **A**. Blank experiment of an aqueous suspension of **MOR-1** (pH 5) with KCl, **B**. Titration of an aqueous suspension of **MOR-1** (pH 5) with ReO4^- in the presence of a ten-fold excess of Cl- anions, **C**. Calibration curve of the titration of an aqueous suspension of **MOR-1** (pH 5) with ReO4^- in the presence of a ten-fold excess of Cl- anions (with respect to ReO4^-).

Figure S32. **A**. Blank experiment of an aqueous suspension of **MOR-1** (pH 5) with NaNO₃, **B**. Titration of an aqueous suspension of **MOR-1** (pH 5) with ReO4^- in the presence of a ten-fold excess of NO3^- anions, **C**. Calibration curve of the titration of an aqueous suspension of **MOR-1** (pH 5) with ReO4^- in the presence of a ten-fold excess of NO3^- anions (with respect to ReO4^-).

Figure S33. **A**. Titration of an aqueous suspension of **MOR-1** (pH 5) with ReO_4^- in the presence of a two-fold excess of SO₄⁻ anions, **C**. Calibration curve of the titration of an aqueous suspension of **MOR-1** (pH 5) with ReO_4^- in the presence of a two-fold excess of SO₄⁻ anions (with respect to ReO_4^-).

Figure S34. A. Titration of an aqueous suspension of MOR-1 (pH 5) with ReO₄⁻ in potable water, **B.** Calibration curve of the titration of an aqueous suspension of MOR-1 (pH 5) with ReO₄⁻ in potable water.

Figure S35. A. Titration of aqueous suspensions (pH 5) of deactivated samples of **MOR-2** (**A**) and **MOR-1** (**B**) with ReO₄⁻. The samples were deactivated by stirring overnight in methanol in the presence of a ten-fold excess of triethylamine followed by excessive washing with methanol and water.

Figure S36. Absorption profile of $NH_4ReO_4(10^{-3} \text{ M})$ in water.