Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Structure-Property Relationship of Metal-Organic Frameworks for

Alcohol Adsorption based Heat Pumps by High-throughput

Computational Screening

Wei Li, Xiaoxiao Xia, Meng Cao and Song Li*

State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, China, 430074.

Table of Contents

Contents	Page Number
S1. Computation details of $\ensuremath{\text{COP}}_C$ based on GCMC simulations	2-5
S2. Structure-property relationship of CoRE MOFs	5-16
S3. COP_{C} calculation by mathematical model	16-21

S1. Computation details of COP_C based on GCMC simulations

Figure S1. Isothermal diagram of adsorption-driven heat pump cycle

The coefficient of performance (COP) of AHPs is defined as the ratio of the output energy and input energy. According to the isosteric diagram of AHP cycle as shown in Figure 1, COP_C for cooling and COP_H for heating can be defined by the following equations, respectively.

$$COP_{C} = \frac{Q_{ev}}{Q_{regen}} \text{ (Eq. S1)}$$
$$COP_{H} = \frac{-(Q_{con} + Q_{ads})}{Q_{regen}} \text{ (Eq. S2)}$$

Here, Q_{con} is the energy released during condensation and Q_{ads} is the energy released during the adsorption stage. Both Q_{con} and Q_{ads} are negative values. Q_{ev} is the energy taken up in the evaporator. Q_{reg} is the energy required for regeneration of adsorbent, which can be obtained according to Eq. S3.

$$Q_{regen} = Q_{I-\Pi} + Q_{\Pi-\Pi} = \int_{T_{con}}^{T_{2}} C_{p}^{effective}(T)dT + \int_{T_{con}}^{T_{2}} \rho_{liq}^{wf} W_{\max} C_{p}^{wf}(T)dT + \int_{T_{2}}^{T_{des}} C_{p}^{effective}(T)dT + \int_{T_{2}}^{T_{des}} \rho_{liq}^{wf} \frac{W_{\max} + W_{\min}}{2} C_{p}^{wf}(T)dT - Q_{sorption}$$
(Eq. S3)
$$Q_{sorption} = \frac{1}{M_{w}} \int_{W_{\min}}^{W_{\max}} \rho_{liq}^{wf} \Delta_{ads} H(W)dW$$
(Eq. S4)

Here, $\int_{T_{con}}^{T_2} C_p^{effective}(T) dT$ is the energy required for the adsorbent bed temperature to change from T_{con} to T_2 ; $\int_{T_{con}}^{T_2} \rho_{liq}^{wf} W_{max} C_p^{wf}(T) dT$ is the energy required for the working fluids temperature to change from T_{con} to T_2 ; $\int_{T_2}^{T_{des}} C_p^{effective}(T) dT$ is the energy required for adsorbent bed temperature change from T_2 to T_{des} ; $\int_{T_2}^{T_{des}} \rho_{liq}^{wf} \frac{W_{max} + W_{min}}{2} C_p^{wf}(T) dT$ is the energy required for the working fluid temperature to change from T_2 to T_{des} ; $Q_{sorption}$ is the energy required for working fluid desorption in the AHP system.

Herein, the $C_p^{effective}$ is the heat capacity of adsorbents (i.e. C_p^{ads}), and C_p^{wf} is the working capacity of working fluid, both of which are assumed to be constants that does not change with the temperature ($C_p^{ads} = 1 \text{ kJ/(kg•K)}$ for MOFs and $C_p^{wf} = 2.2 \text{ kJ/(kg•K)}$ for ethanol).¹ In

addition, it is known that both $\rho_{\it liq}^{\it wf}$ does not vary obviously with temperature either, therefore

the term
$$\int_{T_{con}}^{T_2} \rho_{liq}^{wf} W_{\max} C_p^{wf}(T) dT + \int_{T_2}^{T_{des}} \rho_{liq}^{wf} \frac{W_{\max} + W_{\min}}{2} C_p^{wf}(T) dT \quad \text{was neglected.}$$

Eventually, the energy required for desorption and adsorbent temperature change contribute most to the regeneration energy as shown below.

$$Q_{regen} \approx \int_{P}^{MOFs} (T_{des} - T_{con}) - \frac{1}{M_{w}} \rho_{liq}^{wf} \langle \Delta_{ads} H \rangle \Delta W$$
 (Eq. S5)

Here, the density of ethanol $\rho_{liq}^{\scriptscriptstyle wf}$ was obtained by :

$$\ln \rho = \alpha_0 + \alpha_1 T + \alpha_2 T^2 + \alpha_3 T^3 + \alpha_4 T^4 + \alpha_5 T^5$$
 (Eq. S6)

Table S1. Parameters for ethanol density calculation in Eq.S6

α_0	α_1	α_2	α_3	α_4	α_5
-1.08×10 ⁻¹	-7.72×10-3	1.59×10 ⁻⁴	-1.61×10-6	7.19×10-9	-1.21×10 ⁻¹¹

The loading averaged enthalpy of adsorption was estimated by the following equation

$$\langle \Delta_{ads} H \rangle = \frac{\Delta_{ads} H_{\max} + \Delta_{ads} H_{\min}}{2}$$
 (Eq. S7)

As the temperature increases from 303 K to 353 K, ethanol density decreases from 0.80×10^3 to 0.757×10^3 kg/m³. The unit of ΔW herein was converted to g/g.

In an idealized AHP cycle, $Q_{ads} = -Q_{regen}$

 Q_{ev} and Q_{con} can be obtained by the following equation:

$$Q_{ev} = -\frac{\Delta_{vap} H(T_{ev}) \rho_{liq}^{wf} m_{sorbent} \Delta W}{M_{w}} \quad (Eq. 8)$$

$$Q_{con} = \frac{\Delta_{vap} H(T_{con}) \rho_{liq}^{wf} m_{sorbent} \Delta W}{M_{w}}$$
(Eq. S9)

The ethanol vaporization enthalpy was also computed by:

$$\Delta_{vap}H = A \exp(-\alpha T_r) \left(1 - T_r\right)^{\beta} \quad \text{(Eq. S10)}$$

$$T_r = \frac{T}{T_c} \text{ (Eq. S11)}$$

 Table S2. Parameters used for ethanol vaporization enthalpy calculation

Temperature (K)	A (kJ/mol)	α	β	$T_{c}(\mathbf{K})$
298-469	50.43	-0.4475	0.4989	513.9

 T_c , critical temperature

$$COP_{c} = \frac{Q_{ev}}{Q_{regen}} = \frac{\frac{\Delta_{vap}H(T_{ev})\rho_{liq}^{wf}m_{sorbent}\Delta W}{M_{w}}}{-C_{p}^{sorbent}(T_{des}-T_{con}) + \frac{1}{M_{w}}\rho_{liq}^{wf}\langle\Delta_{ads}H\rangle\Delta W}$$
(Eq. S 12)

$$COP_{H} = \frac{-(Q_{con} + Q_{ads})}{Q_{regen}} = 1 + \frac{\frac{\Delta_{vap}H(T_{con})\rho_{liq}^{wf}m_{sorbent}\Delta W}{M_{w}}}{-C_{p}^{sorbent}(T_{des} - T_{con}) + \frac{1}{M_{w}}\rho_{liq}^{wf}\langle\Delta_{ads}H\rangle\Delta W}$$
(Eq. S 13)

The working conditions for adsorption cooling in this work are shown in Table S3.

Table	e S3. The ope	ration temper	atures in this	work
	T_{ads}	T_{des}	T_{ev}	T_{con}
$T(\mathbf{K})$	303	353	283	303

The evaporation and condensation pressures were fixed at P_{ev} = 3000 Pa (i.e. P/P_o = 0.29 at 303 K) and P_{con} = 10400 Pa (i.e. P/P_o = 1.0 at 303 K), respectively.

adsorbate	interaction site	σ (Å)	$\varepsilon/k_B(\mathbf{K})$	<i>q</i> (e)
	CH ₃	3.75	98.0	0
ethanol	CH ₂	3.95	46.0	0.265
	Ο	3.02	93.0	-0.7
	Н	0	0	0.435

Table S4. TraPPE force field parameters of ethanol

S2. Structure-property relationship of CoRE MOFs

Figure S2. The predicted maximum (W_{max}) and minimum (W_{min}) adsorption capacity of 1527 CoRE MOFs as a function of largest cavity diameter (LCD) and accessible pore volume (a and b); the ethanol working capacity (ΔW) of 1527 CoRE MOFs as a function of LCD and the enthalpy of adsorption at maximum and minimum adsorption capacity (c and d). The working capacity was obtained from $T_2 = 325$ K and $T_{des} = 353$ K, respectively at fixed pressure (P= 10400 Pa).

Figure S3. Structure-property relationship of CoRE MOFs. (a) The relationship between COP_C, working capacity (Δ W) and the structural properties of MOFs (a) largest cavity diameter (LCD), (b) accessible surface area (ASA) and (c) accessible pore volume (V_a). (d), (e) and (f) show the correlation between COP_C, the load averaged enthalpy of adsorption (Δ_{ads} H>) and the structural properties of (d) largest cavity diameter (LCD), (e) accessible surface area (ASA) and (f) accessible pore volume (V_a). The COP_C was obtained at fixed operational temperatures, in which $T_{ads} = T_{con} = 303$ K, $T_{ev} = 283$ K and $T_{des} = 353$ K.

Figure S4. The correlation between the stored thermal energy (Q_{stored}) and working capacity (ΔW) of CoRE MOFs, colored by COP_C. Q_{stored} was obtained at fixed operational temperatures, in which $T_{ads} = T_{con} = 303$ K, $T_{ev} = 283$ K and $T_{des} = 353$ K.

Figure S5. The structure-property relationship between the (a) amount of storable energy (Q_{stored}) per unit volume and (b) per unit mass and LCD of CoRE MOFs, respectively. Q_{stored} is identical to $Q_{sorption}$ as calculated according to Eq. S4.

Figure S6. Decision tree analysis of 1527 CoRE MOFs based on different split criteria. 1433 MOFs with $\text{COP}_{\text{C}} \le 0.8$ exhibited $0 < \Delta W \le 0.27$ g/g and 94 MOFs $\text{COP}_{\text{C}} > 0.8$ exhibited $0.27 < \Delta W \le 0.82$ g/g. For 1433 MOFs with $\text{COP}_{\text{C}} \le 0.8$, 1413 MOFs exhibited $0 < \Delta W \le 0.19$ g/g and 20 MOFs exhibited $0.19 < \Delta W \le 0.27$ g/g. Among the 1413 MOFs with $0 < \Delta W \le 0.19$ g/g, 1368 MOFs exhibited accessible pore volumes of $0.02 < V_a \le 0.96$ cm³/g, and 45 MOFs exhibited $0.96 < V_a \le 3.11$ cm³/g. Among the 94 MOFs with $\text{COP}_{\text{C}} > 0.8$, 74 MOFs exhibited the averaged enthalpy of adsorption of $28.1 < -\langle \Delta_{ads}H \rangle \le 43$ kJ/mol, and 20 MOFs exhibited $43 < -\langle \Delta_{ads}H \rangle \le 45.8$ kJ/mol.

Figure S7. The definition of step position range according to the shape of ethanol adsorption isotherm of MOFs at 303 K. W_s is the saturated adsorption capacity. Ten pressure ranges (i = 0-9) were identified every $P/P_0 = 0.1$. When $(W_{i+1} - W_i)/W_s \ge 0.5$, the step position $P_i < \alpha' \le P_{i+1}$.

Figure S8. Ethanol adsorption isotherms of NU-1000, NU-100, NU-110, PCN-68 and PCN-777 at 303 K from GCMC simulations.

Figure S9. The correlation between (a) COP_{C} and LCD and (b) COP_{C} and ΔW , in which the MOFs with $0.1 < \alpha' < 0.2$ were highlight by gray circles.

Figure S10. The correlation between Henry's constant and the working capacity of 1527 CoRE MOFs colored by average enthalpy of adsorption at T= 303 K. The MOFs with $0.1 < \alpha' \le 0.2$ were highlighted by gray circles.

Figure S11. The correlation between the ratio of host-adsorbate interaction to adsorbateadsorbate interaction ($Q_{host-ad}/Q_{ad-ad}$) of preheating (*II* at 325 K) and desorption (*III* at 353 K) process. The structures within the dotted red box are the ones with $Q_{host-ad}/Q_{ad-ad} < 1$ at preheating (*II*) and $Q_{host-ad}/Q_{ad-ad} > 10$ at desorption (*III*).

a dipreneduning (ii) and Qnost-ad Vad-ad To at deperption.								
DEECODE	LCD	ASA	Va	W_{max}	W_{min}	Q_{total} of Π	Q _{total} of III	COD
KEICODE	(Å)	(m^{2}/g)	(cm^3/g)	(g/g)	(g/g)	(kJ/mol)	(kJ/mol)	COLC
XOPVII	6.84	1325	0.35	0.25	0.23	-84.52	-84.53	0.24
GUYLOC	6.34	1431	0.38	0.25	0.22	-63.61	-63.33	0.29
XIDBUJ	7.47	1059	0.31	0.25	0.22	-60.23	-61.33	0.30
YARGAB	10.67	1352	0.49	0.33	0.28	-54.72	-56.07	0.43
FAKLIO	9.33	2094	0.69	0.43	0.39	-57.09	-57.34	0.46
HIHNUJ	7.99	2746	0.80	0.54	0.47	-49.34	-52.50	0.50
NINHOH	6.48	2413	0.65	0.31	0.23	-49.54	-52.52	0.56
VUSKEA	14.96	3684	1.26	0.06	0.01	-42.06	-47.21	0.67
ALULAV	8.90	5005	1.24	0.85	0.67	-48.92	-52.46	0.72

Table S5. The structure property of the MOFs highlighted in Figure S10 with $Q_{host-ad}/Q_{ad-ad} < 1$ at preheating (*II*) and $O_{host-ad}/O_{ad-ad} > 10$ at desorption.

Figure S12. The structure-property relationship of the MOFs in each screening stage of the (a and d) first, (b and e) second and (c and f) third stage.

Tab	le S6. Top 26 MO	Fs selected	from the	final stage	e of screeni	ng with C	$OP_C \ge 0.8$
No	MOF	ICD(Å)	ASA	Va	COP	ΔW	$-<\Delta_{ads}H>$
INO.	Refcode	LCD (A)	(m^{2}/g)	(cm^3/g)	COPC	(g/g)	(kJ/mol)
1	SUKYIH ²	9.65	3884	1.20	0.96	0.90	42.35
2	ZECKOJ ³	10.56	3190	1.06	0.95	0.63	42.08
3	LUYHAP ⁴	12.04	3563	1.15	0.93	0.74	43.26
4	NIGBOW ⁵	11.77	2528	0.97	0.92	0.57	43.12
5	ANUGIA ⁶	13.83	3789	1.28	0.91	0.82	44.87
6	UTEWUM ⁷	15.00	1766	0.70	0.90	0.40	42.23
7	MIL-88C ⁸	13.74	3909	1.42	0.90	0.86	45.31
8	FEFDEB ⁹	13.11	3488	1.31	0.89	0.84	45.75
9	FUNCEX ¹⁰	13.22	3491	1.30	0.89	0.83	46.10
10	ECOLEP ¹¹	11.30	4555	2.07	0.88	1.00	46.71
11	XAMHEA ¹²	9.14	2801	0.74	0.85	0.40	45.18
12	EGEJIK ¹³	10.14	2930	0.89	0.85	0.58	47.02
13	FUNBOG ¹⁰	12.57	3339	1.23	0.85	0.74	48.05
14	BICDAU ¹⁴	12.31	3558	1.10	0.84	0.71	48.07
15	HIFVUO ¹⁵	7.50	2392	0.65	0.84	0.30	43.87
16	MOXNUJ ¹⁶	7.57	2434	0.66	0.83	0.36	45.87
17	DOTSOV3517	13.23	2138	0.71	0.83	0.36	45.92
18	YUGLES ¹⁸	10.87	3069	0.96	0.82	0.56	48.55
19	NUTQAV ¹⁹	10.87	3062	0.94	0.82	0.54	48.63
20	YURJUR ²⁰	13.69	2832	0.96	0.82	0.57	48.86
21	XADDIR ²¹	13.26	2224	0.72	0.82	0.39	47.22
22	IYIHUU ²²	11.94	3059	1.03	0.81	0.56	49.11
23	TEDGOA ²³	8.47	3311	0.97	0.81	0.57	49.43
24	HIGRIA ¹⁴	11.40	3509	1.09	0.80	0.70	50.51
25	XAMDUM ²⁴	13.22	2139	0.72	0.80	0.39	48.00
26	NUTQEZ ²⁵	12.12	2786	0.87	0.80	0.44	48.78

Table S6. Top 26 MOFs selected from the final stage of screening with $\text{COP}_{\text{C}} \ge 0.8$

Figure S13. Ethanol adsorption isotherms of the selected top three MOFs: (a) SUKYIH, (b) ZECKOJ and (c) LUYHAP at 303 K, 325 K and 353 K.

Figure S14. The density distribution maps of ethanol within the top three MOFs structures: (a) SUKYIH at 325 K and 1000 Pa; (b) SUKYIH at 325K and 4000 Pa; (c) SUKYIH at 325K and 10400 Pa; (d) ZECKOJ at 325 K and 1000 Pa; (e) ZECKOJ at 325 K and 4000 Pa; (f) ZECKOJ at 325 K and 10400 Pa; (g) LUYHAP at 325 K and 1000 Pa; (h) LUYHAP in 325 K, 4000 Pa; (i) LUYHAP in 325 K and 10400 Pa.

Figure S15. (a) Accessible surface area (ASA), (b) helium void fraction (VF),(c) density (ρ), (d) ethanol Henry's constant (K_H),(e) step position (α ') and (f) metal types of CoRE MOFs in the first, second and third round of screening (from the outer to the inner). The number of CoRE MOFs in the first, second and third round of screening are 1527, 94 and 61, respectively.

	S. 1 1 1 4	erage arenn	- P		••••••••••••••		oorda meet	5
Metal type	q (e)	# of MOFs	Metal type	q (e)	# of MOFs	Metal Type	q (e)	# of MOFs
Re	-0.1	6	K	0.93	12	Al	1.84	14
Ir	-0.07	1	Pb	0.93	3	Lu	1.86	3
Au	-0.02	1	Co	0.94	133	Sb	1.99	1
Pt	0.02	4	Na	0.95	7	Sc	2.05	3
Se	0.04	2	Fe	0.95	49	Ti	2.05	1
Rh	0.04	1	Ru	1.07	8	Y	2.07	18
Te	0.14	1	Mn	1.1	110	Tm	2.14	10
Ag	0.3	24	Bi	1.14	2	La	2.15	42
Nb	0.4	1	Be	1.22	2	Pr	2.15	19
As	0.44	1	Sn	1.34	1	Но	2.16	15
Pd	0.46	2	Si	1.38	14	Gd	2.17	39
Hg	0.46	3	Er	1.48	23	Ce	2.21	23
В	0.66	3	Yb	1.49	14	Np	2.23	1
Ni	0.7	71	Mg	1.55	25	Sm	2.25	21
Cu	0.71	261	Cr	1.56	6	Nd	2.27	40
Мо	0.82	12	Ga	1.57	5	U	2.27	12
Cd	0.88	161	Ca	1.58	13	Zr	2.28	5
Li	0.88	8	In	1.6	14	Dy	2.28	26
W	0.89	11	Sr	1.62	5	Hf	2.49	2
Zn	0.9	351	Ba	1.62	7			
Rb	0.92	2	V	1.75	21			

Table S7. The average atomic partial charges for metal elements of 1527 CoRE MOFs

Note: among 1527 MOFs, 1365 MOFs only possess a single type of metal element, thus it was counted only once for the number of MOFs in Table S6; 156 MOFs possess two types of metals, which was counted twice. Similarly, 5 MOFs with three types of metals were counted three times and one MOF with four types of metals was counted four times.

S3. Details of COP_C calculation by mathematical model

S3.1 MOF Synthesis and Adsorption Measurements

Materials and synthesis: All chemicals required in this study were used as received (without any purification) from commercial sources. Zirconium chloride (ZrCl₄, 99.95%) from J&K China Chemical Ltd. Zirconyl chloride octahydrate (ZrOCl₂·8H₂O, 99.9%), benzoic acid (99.9%) and 1,4-benzenedicarboxylic acid (H₂BDC, 99%) from Aladdin. Biphenyl-4,4'-dicarboxylic acid (H₂BPDC, 98%) and tetraethyl 4,4',4'',4'''-(pyrene-1,3,6,8-tetrayl) tetrabenzoic acid (H₄TBAPy, 98%) from Zhengzhou Alfachem Co.,Ltd. N,N-dimethylformamide (DMF), acetic acid, hydrochloric acid (HCl), ethanol and acetone from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China, AR). UiO-66, UiO-67 and NU-1000 were synthesized according to previously reported protocol,²⁶⁻²⁸ respectively.

Ethanol adsorption isotherm: The ethanol adsorption isotherms were measured by Quantachrome Autosorb-iQ2 sorption analyzer using absolute ethanol. For each measurement, 50 mg of sample was used. Each sample was outgassed under vacuum at 353 K and 393 K for 0.5 and 24 h, respectively. After outgassing, the sample was measured at 293 K and 303 K, respectively. Ethanol vapor adsorption was measured at relative pressure (P/P_0) ranging from 0.001 to 1.0 P was the pressure of ethanol vapor in the sample cell when equilibrium has been achieved. P₀ was the saturation pressure of ethanol vapor at the working temperature.

S3.2 COP_C calculation by mathematic model

To predict the equilibrium uptake of ethanol of synthesized MOFs at varying temperatures, we used a universal isotherm model²⁹ (Eq. S14) to fit the experimentally measured isotherms of UiO-66, UiO-67 and NU-1000.

$$W = \sum_{i=1}^{n} \alpha_{i} \left\{ \frac{\left(\frac{p}{p_{0}} \exp(\frac{\varepsilon_{Oi}}{RT})\right)^{\frac{RT}{m_{i}}}}{1 + \left(\frac{p}{p_{0}} \exp(\frac{\varepsilon_{Oi}}{RT})\right)^{\frac{RT}{m_{i}}}} \right\}_{i} \text{ Eq. S14}$$

W is the adsorption uptake, *P* stands for the equilibrium pressure, *P*_o represents the saturation pressure of working fluids. α_i is an introduced probability factor to meaningfully capture the characteristics of the energy distribution of adsorption sites over the heterogeneous surface and the sum of all of the probability factors equals one, i.e., $\sum_{i=1}^{n} \alpha_i \cdot \varepsilon_{oi}$ represents the adsorption energy site with maximum frequency; m_i represents the surface heterogeneity or

the range of the energy sites available for the adsorption. The value of n, which reflects the complexity in form of multi-layer behavior, is determined by the characteristics of adsorption isotherms. Here, the parameters of Eq. S14 were obtained by fitting of experimentally measured adsorption isotherms of ethanol for UiO-66, UiO-67 and NU-1000, which are provided in Table S8.

	п	α	\mathcal{E}_{O}	m_i
UiO-66		$\alpha_1 = 0.04544$	$\epsilon_{o1} = 5.96 \times 10^3$	$m_1 = 3.8 \times 10^2$
	3	$\alpha_2 = 0.24906$	$\epsilon_{o2} = 7.33 \times 10^{3}$	$m_2 = 3.37 \times 10^3$
		$\alpha_3 = 0.70550$	$\epsilon_{o3}=2.01\times10^{-13}$	$m_3 = 5.50 \times 10^2$
		$\alpha_1 = 0.29067$	$\epsilon_{o1} = 6.72 \times 10^3$	$m_1 = 1.78 \times 10^2$
UiO-67	3	$\alpha_2 = 0.25129$	$\epsilon_{o2} = 5.98 \times 10^{3}$	$m_2 = 2.90 \times 10^3$
		$\alpha_3 = 0.45805$	ϵ_{o3} =3.07×10-9	$m_3 = 4.46 \times 10^2$
NU-1000		$\alpha_1 = 0.11182$	$\epsilon_{o1} = 3.20 \times 10^3$	$m_1 = 2.21 \times 10^2$
	4	$\alpha_2 = 0.39995$	$\epsilon_{o2} = 9.18 \times 10^{2}$	$m_2 = 4.84 \times 10^3$
	4	$\alpha_3 = 0.30481$	$\epsilon_{o3} = 2.78 \times 10^3$	$m_3 = 12.42$
		$\alpha_4 = 0.18342$	$\epsilon_{o4} = 7.27 \times 10^3$	$m_4 = 1.05 \times 10^3$

Table S8. Parameters used in the universal isotherm model of UiO-66, UiO-67 and NU-1000.

After obtaining the fitted isotherms at operation temperatures (Figure S16), the coefficient of performance for cooling (COP_C) can be calculated according to Eq. 1 based on the thermodynamic cycle diagram of adsorption cooling as shown in Figure 1. Clausius-Clapeyron equation was employed to obtain the enthalpy of adsorption by using the experimental isotherms of ethanol at different temperatures. The operation temperature was exactly the same as in computational screening base on GCMC simulations shown in Table S3. Finally, the calculated values of COP_C at given working condition were provided in Figure S17 and Table S9.

Figure S16. Fitted adsorption isotherms of ethanol of (a) UiO-66, (b) UiO-67, (c) NU-1000 by universal isotherm model. The red and blue dots represent experimental measured data, and the lines represent fitted data.

Figure S17. Comparison of COP_C for UiO-66, UiO-67 and NU-1000 by high-throughput computational screening based on GCMC simulations and those obtained from mathematic model based on experimentally measured ethanol adsorption isotherms at operating temperatures.

Table 57. COT C of 010-00, 010-07 and 110-1000 from mathematical model and simulations						
_	UiO-66	UiO-67	NU-1000			
COP _C from	0.510	0.506	0.772			
mathematical model	0.310	0.306	0.775			
COP _C from GCMC	0.416	0.262	0.916			
simulation	0.410	0.362	0.810			

Table S9. COP_C of UiO-66, UiO-67 and NU-1000 from mathematical model and simulations

Figure S18. Ethanol adsorption isotherms of UiO-66, UiO-67 and NU-1000 obtained from experimental measurements in this work (a, c, e) and GCMC simulations (b, d, f) at 293 K and 303 K.

References

- 1. M. F. de Lange, K. J. F. M. Verouden, T. J. H. Vlugt, J. Gascon and F. Kapteijn, *Chem. Rev.*, 2015, **115**, 12205-12250.
- 2. L. Ma, A. Jin, Z. Xie and W. Lin, Angew. Chem. Int. Ed., 2009, 48, 9905-9908.
- 3. E. Quartapelle Procopio, T. Fukushima, E. Barea, J. A. Navarro, S. Horike and S. Kitagawa, *Chem. Eur. J.*, 2012, **18**, 13117-13125.
- 4. D. Zhao, D. Yuan, A. Yakovenko and H. C. Zhou, *Chem. Commun.*, 2010, **46**, 4196-4198.
- 5. Y. Y. Liu, S. Couck, M. Vandichel, M. Grzywa, K. Leus, S. Biswas, D. Volkmer, J. Gascon, F. Kapteijn, J. F. Denayer, M. Waroquier, V. Van Speybroeck and P. Van Der Voort, *Inorg. Chem.*, 2013, **52**, 113-120.
- J. K. Schnobrich, O. Lebel, K. A. Cychosz, A. Dailly, A. G. Wong-Foy and A. J. Matzger, *J. Am. Chem. Soc.*, 2010, **132**, 13941-13948.
- V. Colombo, S. Galli, H. J. Choi, G. D. Han, A. Maspero, G. Palmisano, N. Masciocchi and J. R. Long, *Chem. Sci.*, 2011, 2, 1311-1319.
- 8. S. Surble, C. Serre, C. Mellot-Draznieks, F. Millange and G. Ferey, *Chem. Commun.*, 2006, **3**, 284-286.
- P. V. Dau, M. Kim, S. J. Garibay, F. H. Munch, C. E. Moore and S. M. Cohen, *Inorg. Chem.*, 2012, **51**, 5671-5676.
- 10. O. K. Farha, C. D. Malliakas, M. G. Kanatzidis and J. T. Hupp, *J. Am.Chem. Soc.*, 2010, **132**, 950-952.
- 11. M. Li, D. Du, G. Yang, S. Li, Y. Lan, K. Shao, J. Qin and Z. Su, *Cryst. Growth & Des.*, 2011, **11**, 2510-2514.
- 12. R. K. Deshpande, G. I. Waterhouse, G. B. Jameson and S. G. Telfer, *Chem. Commun.*, 2012, **48**, 1574-1576.
- 13. A. D. Burrows, C. G. Frost, M. F. Mahon and C. Richardson, *Angew. Chem.Int. Ed.*, 2008, **47**, 8482-8486.
- P. Schmieder, D. Denysenko, M. Grzywa, B. Baumgartner, I. Senkovska, S. Kaskel, G. Sastre, L. van Wullen and D. Volkmer, *Dalton Trans.*, 2013, 42, 10786-10797.
- 15. Y. Q. Tian, Y. M. Zhao, Z. X. Chen, G. N. Zhang, L. H. Weng and D. Y. Zhao, *Chem. Eur. J.*, 2007, **13**, 4146-4154.
- 16. P. E. Ryan, C. Lescop, D. Laliberte, T. Hamilton, T. Maris and J. D. Wuest, *Inorg. Chem.*, 2009, **48**, 2793-2807.
- Y. Wu, A. Kobayashi, G. J. Halder, V. K. Peterson, K. W. Chapman, N. Lock,
 P. D. Southon and C. J. Kepert, *Angew. Chem. Int. Ed.*, 2008, 47, 8929-8932.
- 18. Y. Hu, S. Xiang, W. Zhang, Z. Zhang, L. Wang, J. Bai and B. Chen, *Chem. Commun.*, 2009, **48**, 7551-7553.
- 19. D. Sun, S. Ma, J. M. Simmons, J.-R. Li, D. Yuan and H.-C. Zhou, *Chem. Commun.*, 2010, **46**, 1329-1331.
- 20. E. Neofotistou, C. D. Malliakas and P. N. Trikalitis, *CrystEngComm*, 2010, **12**, 1034-1037.
- 21. F. Ma, S. Liu, D. Liang, G. Ren, C. Zhang, F. Wei and Z. Su, Eur. J. Inorg.

Chem., 2010, 2010, 3756-3761.

- C. Y. Lee, Y. S. Bae, N. C. Jeong, O. K. Farha, A. A. Sarjeant, C. L. Stern, P. Nickias, R. Q. Snurr, J. T. Hupp and S. T. Nguyen, *J. Am. Chem. Soc.*, 2011, 133, 5228-5231.
- 23. G.-S. Yang, M.-N. Li, S.-L. Li, Y.-Q. Lan, W.-W. He, X.-L. Wang, J.-S. Qin and Z.-M. Su, *J. Mater. Chem.*, 2012, **22**, 17947-17953.
- 24. A. J. Graham, J. C. Tan, D. R. Allan and S. A. Moggach, *Chem. Commun.*, 2012, **48**, 1535-1537.
- 25. D. Sun, S. Ma, J. M. Simmons, J. R. Li, D. Yuan and H. C. Zhou, *Chem. Commun.*, 2010, **46**, 1329-1331.
- 26. A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz, M. Wiebcke and P. Behrens, *Chem. Eur. J.*, 2011, **17**, 6643-6651.
- S. Oien-Odegaard, B. Bouchevreau, K. Hylland, L. P. Wu, R. Blom, C. Grande, U. Olsbye, M. Tilset and K. P. Lillerud, *Inorg. Chem.*, 2016, 55, 1986-1991.
- T. C. Wang, N. A. Vermeulen, I. S. Kim, A. B. F. Martinson, J. F. Stoddart, J. T. Hupp and O. K. Farha, *Nat. Protoc.*, 2016, 11, 149-162.
- 29. K. C. Ng, M. Burhan, M. W. Shahzad and A. B. Ismail, *Sci. Rep.*, 2017, 7, 10634.