Electronic supplementary information (ESI⁺)

Self-assembly optimization of cadmium/molybdenum sulfide hybrids by cation coordination competition toward extraordinarily efficient photocatalytic hydrogen evolution

Xiaoyong Xu,^{*,a} Fengting Luo,^a Gang Zhou,^c Jingguo Hu,^{*,a} Haibo Zeng,^{*,b} and Yong Zhou^{*,c}

^aSchool of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China. E-mail: xxy@yzu.edu.cn, jghu@yzu.edu.cn
^bInstitute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology, Nanjing 210094, China. E-mail: zeng.haibo@njust.edu.cn
^cSchool of Physics, Nanjing University, Nanjing 210093, China. E-mail: zhouyong1999@nju.edu.cn

Sections	Page
SAED patterns	S3
EDX spectra	S4
XPS element proportion analysis	85
Kubelka–Munk transformed reflectance spectra	S6
H ₂ evolution and AQE under monochromatic light irradiation	S7
H ₂ evolution at different catalyst concentrations	S8
Comparison of various CdS/MoS ₂ heterogeneous catalysts	S9
Comparison of various state-of-the-art heterogeneous catalysts	S10
Microstructure characterizations after stability testing	S11
PL spectra	S12
Time dependent V_{α}	S13
Electrochemical CV curves	S14
EIS Nyquist plots	S15
References	S16

Fig. S1 SAED patterns of (a) MoS_2 and (b) CM2.

The comparison of the corresponding SAED patterns for pure MoS_2 and CM2 indicates the heterogeneous components in CM2 hybrid.

Fig. S2 EDX spectra of MoS_2 and CM2.

The comparison of the corresponding EDX spectra for pure MoS_2 and CM2 indicates the incorporation of Cd element in CM2 hybrid. And CM2 consists of Cd, S and Mo elements, while C and Cu elements come from the sample holder for TEM tests.

Name	Area (P) CPS.eV	Atomic %	Weight %
Cd 3d	563995.99	5.1	22.30
S 2p	171109.73	21.19	25.70
Mo 3d	177506.25	3.87	16.71

Table S1 Element proportion analysis for CM2 based on XPS data.

Fig. S3 Transformed reflectance spectra from UV-Vis absorption spectra of MoS_2 , CdS and CM hybrids.

The corresponding Kubelka–Munk transformed reflectance spectra were used to determine the band-gap values for CM hybrids, as well as pure MoS_2 and CdS as two references. The monotonical tunability of the band gaps for CM hybrids is indicated to be associated with the energy-band coupling and the electronic interaction between CdS and MoS_2 .

Fig. S4 Amount of evolved H_2 and corresponding AQE over CM2 photocatalyst under the monochromatic light irradiations of 420 and 450 nm for 10 h, respectively.

The AQE values were determined by the following calculation method:

AQE [%] =
$$\frac{\text{number of reacted electrons}}{\text{number of incident photons}} \times 100\%$$

= $\frac{\text{number of evolved H}_2 \text{ molecules} \times 2}{\text{number of incident photons}} \times 100\%$
= $\frac{M_{\text{H}_2} \times N_{\text{A}} \times 2 \times h \times c}{I_{\text{i}} \times S \times t \times \lambda} \times 100\%$

where $M_{\rm H_2}$ is the mole number of evolved H₂, $N_{\rm A}$, *h* are the Avogadro's and Planck's constants, *c*, λ , *t*, *S* and $I_{\rm i}$ are the wave speed, wavelength, time, area, and intensity of light irradiation, respectively. The $I_{\rm i}$ was determined by FZ-A spectroradiometer (Perfectlight, Beijing) and the *S* was calibrated to be 10 cm². **Table S2** Various parameters for AQE calculation.

Wavelength (nm)	Intensity (µW cm²)	${ m H_2}$ amount (µmol)
420 (±5 nm)	100	44.6
450 (±5 nm)	95	34.9

Fig. S5 H_2 evolution rates normalized to (a) time (per hour), and (b) mass and time (per gram per hour) at different catalyst concentrations.

With the catalyst dose increasing, the H_2 output per hour gradually increases, after that it instead decreases owing to the optical shielding effect induced by the excess suspended catalyst. Note that the H_2 evolution rates (mmol h⁻¹ g⁻¹) normalized to the catalyst mass are very similar when the catalyst concentration is lower than 1 g L⁻¹, meaning that such a high photocatalytic activity is indeed intrinsic, while it suffers from shielding effect at related high catalyst concentration.

Photocatalyst	Incident light	Aqueous reaction solution	Activity (mmol g ⁻¹ h ⁻¹)	Quantum yield (%)	Catalyst concentration (g L ⁻¹)	Reference
MoS ₂ -CdS	λ>420 nm	Lactic acid	1.472	-	1	1
MoS ₂ -CdS	λ>420 nm	Lactic acid	12.95	38.4% at 420 nm	0.67	2
MoS ₂ -CdS	λ>420 nm	Lactic acid	24.655	28.5% at 420 nm	0.25	3
MoS ₂ -CdS	λ>420 nm	Lactic acid	60.28	-	1	4
MoS ₂ -CdS- ERGO	AM 1.5	Lactic acid	234	-	1.3	5
MoS ₂ -CdS	AM 1.5	Lactic acid	8.44	22.2% at 420 nm	0.43	6
MoS ₂ -CdS	λ>420 nm	Lactic acid	12.6	37.6% at 420 nm	0.3	7
MoS ₂ -CdS	λ>420 nm	Lactic acid	1.696	23.03% at 420 nm	0.5	8
MoS ₂ -CdS	AM 1.5	Lactic acid	1009	71% at 420	0.2	This work

Table S3 Comparison of various MoS_2 -CdS hybrids reported for photocatalytic H_2 evolution.

Table S4 Comparison of various state-of-the-art heterogeneous catalysts reported forphotocatalytic H_2 evolution.

Photocatalyst	Incident light	Aqueous reaction solution	Activity (mmol g ⁻¹ h ⁻¹)	Quantum yield (%)	Catalyst concentration (g L ⁻¹)	Reference
g-C ₃ N ₄ - Pt	λ> 420 nm	Lactic acid	6.9	-	0.1	9
MnOx-CdS- CoP	AM 1.5	Na_2S and Na_2SO_3	23.84	-	0.1	10
g-C ₃ N ₄ - Pt	λ> 420 nm	Triethanolamine	15.4	50.7% at 405 nm	0.5	11
CdS-Ti ₃ C ₂	λ> 420 nm	Lactic acid	14.342	40.1% at 420 nm	0.25	12
Zn _{0.5} Cd _{0.5} S- PdP _{0.33} S _{1.67}	λ> 420 nm	Ascorbic acid	372.12	19.70% at 420 nm	0.01	13
MoS ₂ -TiO ₂	AM 1.5	Methanol	580	-	0.067	14
CdS-Co ₉ S ₈	AM 1.5	Na_2S and Na_2SO_3	1.06	-	0.2	15
TiO ₂ - Pt	AM 1.5	Methanol	1.954	3.52% at 405 nm	1	16
Cl ₂ -Bi ₁₂ O ₁₇ - MoS ₂	λ> 420 nm	Ascorbic acid	33	-	0.125	17
Co ₂ P-CdS	AM 1.5	Lactic acid	10.8	-	0.25	18
MoS ₂ -CdS	AM 1.5	Lactic acid	1009	71% at 420	0.2	This work

Fig. S6 (a) TEM image, (b) EDX spectrum and (c) XRD pattern of CM2 after stability testing.

The TEM image, XRD pattern and EDX spectrum of CM2 after stability testing were measured and together show no noticeable change in its microstructure, confirming the excellent stability of CM2 catalyst during photocatalytic reaction.

Fig. S7 Steady-state PL spectra of CM hybrids and pure CdS.

The steady-state PL spectra show the vanishing fulorescence in CM hybrids, compared to that of pure CdS, meaning the effective suppression against photogenerated charge recombination after CdS hybridized with MoS₂, which boosts exciton dissociation and hot electron output.

Fig. S8 Time dependent V_{∞} upon switching light irradiation of CM hybrids.

When the light irradiation at open circuit is terminated, electron recombination kinetics at the semiconductor interface is correlated to the photovoltage decay rate. The electron lifetimes (τ) at different potentials can be determined from the V_{∞} decay using the following equation:¹⁹

$$\tau = -\frac{k_{\rm B}T}{e} \left(\frac{dV_{\infty}}{dt}\right)^{-1}$$

where $k_{\rm B}$ is Boltzmann's constant, *T* is the temperature, and *e* is the elementary charge. The comparison of V_{α} decay upon irradiation termination for CM hybrids revealed that the longer survivability of electrons in CM2, which results from the more effective electron transfer and separation at heterointerface in CM2.

Fig. S9 Electrochemical CV curves at various scan rates for MoS₂ and CM hybrids.

The electrochemical CV was performed for different catalysts to estimate their effective surface areas. The potential ranges without faradic current was selected, which meant that the current response in this region was attributed to the charging of the double layer. The halves of the positive and negative current density differences at the center of the scanning potential ranges are plotted versus the voltage scan rates in Fig. 4d, in which the slopes are the eletrochecmical DLCs.

Fig. S10 EIS Nyquist plots for MoS₂ and CM hybrids.

The Nyquist plots reveal the smallest semicircle and the lowest interfacial electron transfer resistance in CM2, compared to those in CM1 and CM2. The more active sites equiped on CM2 effectively reduce the activation barrier, facilitating the interfacial electron transfer into HER.

References

- 1 J. Chen, X. J. Wu, L. S. Yin, B. Li, X. Hong, Z. X. Fan, B. Chen, C. Xue and H. Zhang, *Angew. Chem.*, *Int. Ed.*, 2015, **54**, 1210.
- 2 K. Chang, M. Li, T. Wang, S. X. Ouyang, P. Li, L. Q. Liu and J. H. Ye, *Adv. Energy Mater.*, 2015, 5, 1402279.
- 3 B, Han, S. Q. Liu, N. Zhang, Y. J. Xu and Z. R. Tang, *Appl. Catal. B: Environ.*, 2017, **202**, 298.
- 4 X. L. Yin, G. Y. He, B. Sun, W. J. Jiang, D. J. Xue, A. D. Xia, L. J. Wan and J. S. Hu, *Nano Energy*, 2016, **28**, 319.
- 5 D. P. Kumar, S. Hong, D. A. Reddy and T. K. Kim, *Appl. Catal. B: Environ.*, 2017, 212, 7.
- 6 K. Zhang, J. K. Kim, M. Ma, S. Y. Yim, C. L. Lee, H.J. Shin and J. H. Park, *Adv. Funct. Mater.*, 2016, **26**, 4527.
- 7 K. Zhang, S. F. Qian, W. J. Kim, J. K. Kim, X. W. Sheng, J. Y. Lee and J. H. Park, *Nano Energy*, 2017, 34, 481.
- F. K. Ma, Y. Z. Wu, Y. L. Shao, Y. Y. Zhong, J. X. Lv and X. P. Hao, *Nano Energy*, 2016, 27, 466.
- 9 H. J. Yu, R. Shi, Y. X. Zhao, T. Bian, Y. F. Zhao, C. Zhou, G. I. N. Waterhouse, L. Z. Wu, C. H. Tung and T. R. Zhang, *Adv. Mater.*, 2017, 29, 1605148.
- 10 M. Y. Xing, B. C. Qiu, M. M. Du, Q. H. Zhu, L. Z. Wang and J. L. Zhang, Adv. Funct. Mater., 2017, 27, 1702624.
- 11 L. H. Lin, H. H. Ou, Y. F. Zhang and X. C. Wang, ACS Catal., 2016, 6, 3921.
- 12 J. R. Ran, G. P. Gao, F. T. Li, T. Y. Ma, A. J. Du and S. Z. Qiao, *Nat. Commun.*, 2017, **8**, 13907.
- 13 J. G. Song, H. T. Zhao, R. R. Sun, X. Y. Li and D. J. Sun, *Energy Environ. Sci.*, 2017, 10, 225.
- 14 L. Guo, Z. Yang, K. Marcus, Z. Li, B. Luo, L. Zhou, X. Wang, Y. Du and Y. Yang, *Energy Environ. Sci.*, 2018, **11**, 106.
- 15 B. C. Qiu, Q. H. Zhu, M. M. Du, L. G. Fan, M. Y. Xing and J. L. Zhang, *Angew. Chem.*, 2017, **129**, 2728.
- 16 L. D. Li, J. Q. Yan, T. Wang, Z. J. Zhao, J. Zhang, J. L. Gong and N. J. Guan, *Nat. Commun.*, 2015, 6, 5881.
- 17 J. Li, G. M. Zhan, Y. Yu and L. Z. Zhang, Nat. Commun., 2016, 7, 11480.
- 18 W. T. Bi, L. Zhang, Z. T. Sun, X. G. Li, T. Jin, X. J. Wu, Q. Zhang, Y. Luo, C. Z. Wu and Y. Xie, ACS Catal., 2016, 6, 4253.
- 19 J. S. DuChene, B. C. Sweeny, A. C. Johnston-Peck, D. Su, E. A. Stach and W. D. Wei, *Angew. Chem. Int. Ed.*, 2014, 53, 7887.