Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information

Chemically Soft Solid Electrolyte Interphase Forming Additives for Lithium-ion Batteries

Piotr Jankowski,^{a,b,c} Marcin Poterała,^a Niklas Lindahl,^b Władysław Wieczorek^{a,c} and Patrik Johansson^{b,c}

 ^a Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
^b Department of Physics, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
^c ALISTORE-ERI European Research Institute, CNRS FR 3104, Hub de l'Energie, Rue Baudelocque, 80039 Amiens Cedex, France

* piotr.jankowski@chalmers.se

Figure S1. ¹H NMR spectrum of DTDPh.

Figure S2. ¹³C NMR spectrum of DTDPh.

Figure S3. FTIR spectrum of DTDPh.

Figure S4. ¹H NMR spectrum of PSPh.

Figure S5. ¹³C NMR spectrum of PSPh.

Figure S6. FTIR spectrum of PSPh.

Figure S7. ¹H NMR spectrum of PSOPh.

Figure S8. ¹³C NMR spectrum of PSOPh.

Figure S9. FTIR spectrum of PSOPh.

Figure S10. Changes in charge distribution by reduction of additives: DTD (a), PS (b), DTDPh (c), PSPh (d) and PSOPh (e).

Figure S11. Cyclic voltammogram of graphite electrode with commercial style electrolyte without/with 5 wt% additive; sweep rate 1 mV s⁻¹.

Figure S12. Potential profile of the first charge-discharge cycle of half-cell with commercial style electrolyte without/with 5 wt% of additive at C/20 rate. Inset shows in detail the initial stage of the charge cycle.

Figure S13. Cycling performance of full-cells without/with 1% of additive at different current rates.

Table S1.	Comparison of	^c electrochemical	performance of	f cells with	LiTDI-based	electrolyte.
-----------	---------------	------------------------------	----------------	--------------	-------------	--------------

Study	Electrodes	Electrolyte	Results
L. Niedzicki et al. <i>J.</i> <i>Power Sources,</i> 2011, 196, 8696	Li/LMO	1M LiTDI in EC:DMC (1:1)	96% capacity retention after 22 cycles at 1C rate
S. Paillet et al. J. Power Sources, 2015, 299, 309	Graphite/Li	1 M LiTDI in EC:DEC (3:7)	Reduction of salt at 0.9-0.7 V vs. Li ⁺ /Li ^o (twin peak)
S. Paillet et al. <i>J. Power</i> <i>Sources</i> , 2015, 299, 309	LTO/LFP	1 M LiTDI in EC:DEC (3:7)	85.4% capacity retention after 900 cycles at 1C rate
S. Paillet et al. <i>J. Power</i> <i>Sources</i> , 2015, 299, 309	LTO/NMC	1 M LiTDI in EC:DEC (3:7)	85.8% capacity retention after 450 cycles at 0.25C rate
S.A. Delp et al. <i>Electrochimica Acta,</i> 2016, 209, 498	GC/Li	1 M LiTDI in EC:EMC (3:7)	Reduction of salt at 1.6 V vs. Li ⁺ /Li ^o
G.G. Eshetu et al. ACS Appl. Mater. Interfaces 2016, 8, 16087	Graphite/Li	1 M LiTDI in EC:DMC (1:2)	Reduction of salt at 0.9V vs. Li ⁺ /Li ^o
I.A. Shkrob et al. <i>J.</i> <i>Phys. Chem. C</i> , 2016, 120, 28463	Graphite/Li	0.5 M LiTDI in EC:EMC (3:7)	~35% capacity retention after 7 cycles at 0.05C rate; reduction of salt at 0.68-0.74 V vs. Li (twin peak)
This work	Graphite/Li	1 M LiTDI in EC:DMC (1:1)	Reduction of salt at 1.3 and 0.8 V vs. Li ⁺ /Li ^o
This work	Graphite/LFP	1 M LiTDI in EC:DMC (1:1)	25% capacity retention after 10 cycles (~0% after 30 cycles) at 0.05C rate