Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Material (ESI)

Direct Z-Scheme Cs₂O-Bi₂O₃-ZnO Heterostructures for Photocatalytic Overall Water Splitting

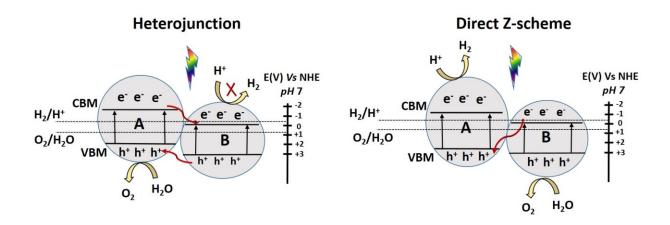
Abdo Hezam,^{*a*} K. Namratha,^{*a*} Q.A. Drmosh,^{*b*} Deepalekshmi Ponnamma,^{*c*} Adel Morshed Nagi Saeed,^{*d*} V.Ganesh,^{*e*} B. Neppolian,^{*f*} and K.Byrappa *^{*a*}

^a Center for Materials Science and Technology, University of Mysore, Vijana Bhavana,

Manasagangothiri, Mysuru-570006, India.

^b Physics Department and Center of Research Excellence in Nanotechnology, King Fahd

University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.


^c Center for Advanced Materials, Qatar University, P O Box 2713, Doha, Qatar

^d Department of Polymer Science and Technology, Sri Jayachamarajendra College of

Engineering, JSS Science & Technology University, Mysuru – 570 006, India.

^e Department of Physics & Nanotechnology, SRM Institute of Science and Technology, Chennai-603203, India.

^f Energy and Environmental Remediation Lab, SRM-Research Institute, SRM Institute of Science and Technology, Chennai-603203, India.

Scheme S1. Comparison of charge carriers migration pathway in heterojunction and direct Z-scheme systems.

PXRD studies

Figure S1 shows comparison between the PXRD patterns of Cs₂O-Bi₂O₃-ZnO (samples CBZ0.5, CBZ1, CBZ1.5 and CBZ2), Bi₂O₃-ZnO heterostructures (sample CBZ0), pristine Bi₂O₃, pristine ZnO, and pristine Cs₂O. The PXRD patterns of Bi₂O₃, ZnO, and Cs₂O are well matched with JCPDS file no. 71-2274, JCPDS Card No. 36-1451, and JCPDS file no. 71-2274, respectively, indicating the monoclinic crystal structure of Bi₂O₃ and the hexagonal structure of ZnO and Cs₂O. The Cs₂O-Bi₂O₃-ZnO heterostructure consists of three phases namely, hexagonal Cs₂O (PDF #09-0104) ¹, hexagonal ZnO (JCPDS Card No. 36-1451) ² and monoclinic α -Bi₂O₃ (JCPDS file no. 71-2274) ³ while the PXRD pattern of the sample CBZ0 reveals that the Bi₂O₃-ZnO consists of monoclinic α -Bi₂O₃ and hexagonal ZnO phases only. Moreover, the PXRD study indicates that no crystal impurities are detected confirming the purity of the prepared heterostructures..

The characteristics peaks of Cs₂O appear on the spectrum of CBZ1.5 at 2θ = 18.2, 25.7, and 42.51° (JCPDS 09-0104). The peaks at 31.69, 34.83, and 36.16° for both CBZ1.5 and CBZ0 samples correspond to the hexagonal phases of ZnO (JCPDS 36-1451). The remaining peaks observed are due to the monoclinic phase of α -Bi₂O₃ (JCPDS 71-2274). It is worth noting that the peak intensity and/or peak width of heterostructures are not similar to those of pristine metal oxides indicating a change in the crystal growth and the size of heterostructure nanoparticles and confirming the formation of nanoscale heterostructures ^{4,5}. These results confirm the successful formation of Cs₂O-Bi₂O₃-ZnO and Bi₂O₃-ZnO heterostructures.

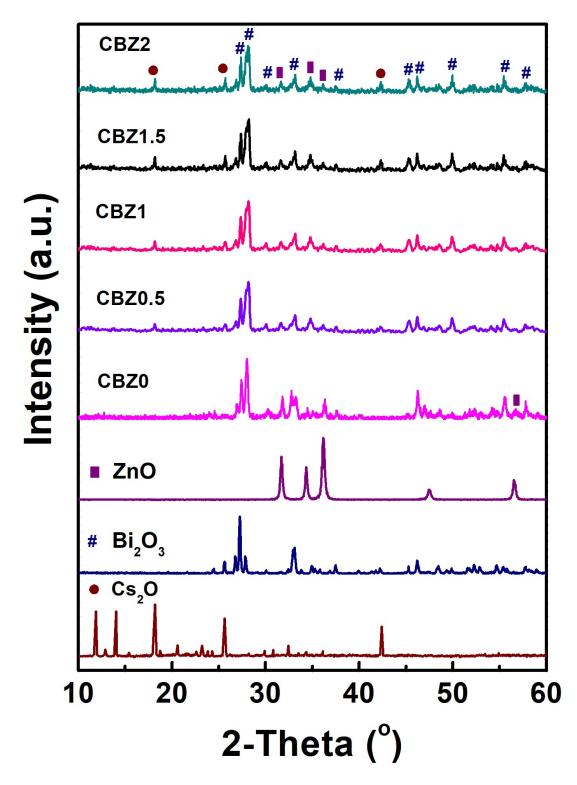


Fig. S1. PXRD patterns of Cs₂O, Bi₂O₃, ZnO, CBZ0, CBZ0.5, CBZ1, CBZ1.5, and CBZ2 samples.

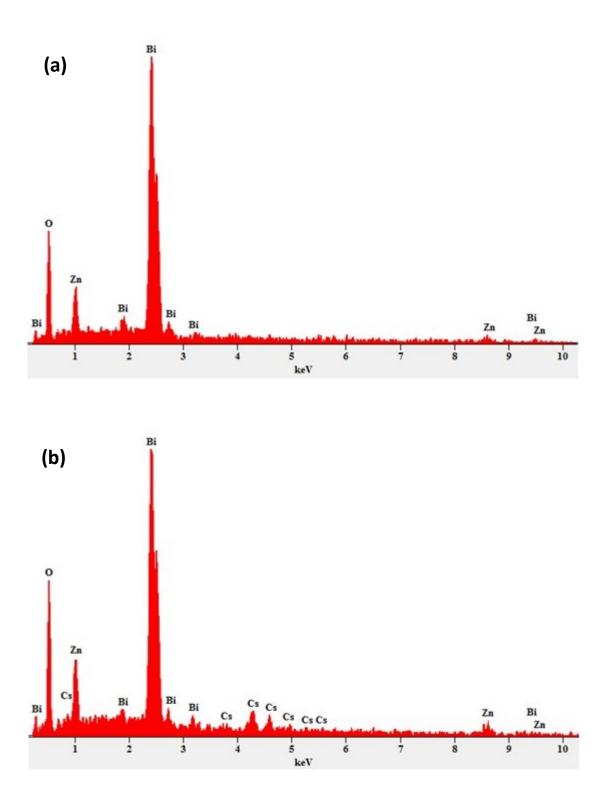


Fig. S2. EDX spectra of (a) Bi₂O₃-ZnO heterostucture (sample CBZ0), and (b) the optimized Cs₂O-Bi₂O₃-ZnO heterostucture (sample CBZ1.5).

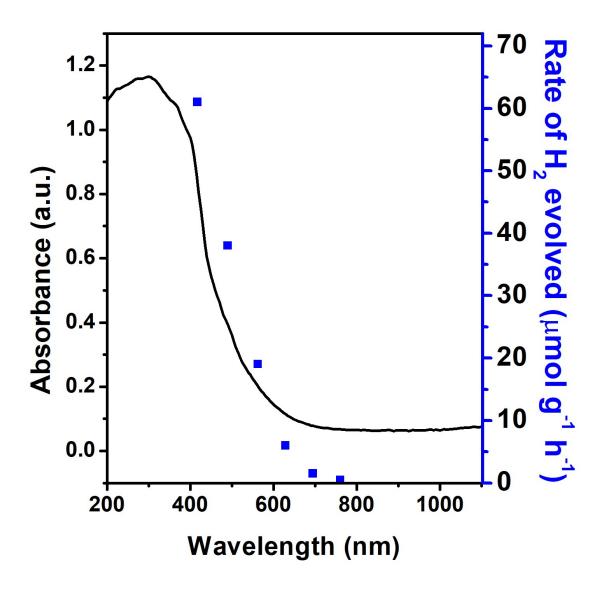


Fig. S3. Dependence of the rate of H_2 evolved on the wavelength of incident light (blue line) and the DRS UV-vis of CBZ1.5 sample (black line). Reaction conditions: 5 m g CBZ1.5; pure water; simulated sunlight (AM 1.5 G,).

Fig. S3 shows that the positive relation between the photocatalytic activity of Cs₂O-Bi₂O₃-ZnO and its optical absorption property (Fig. 5b).

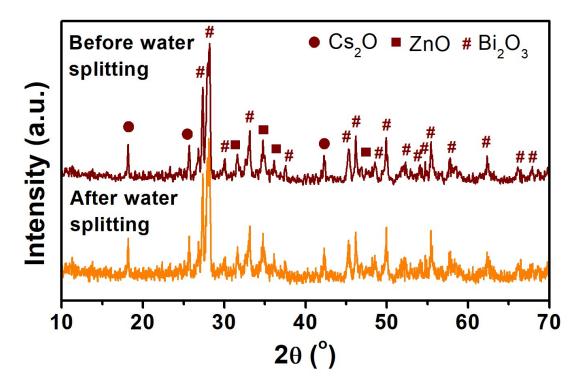


Fig. S4. PXRD patterns of the sample CBZ1.5 before and after water splitting experiment.

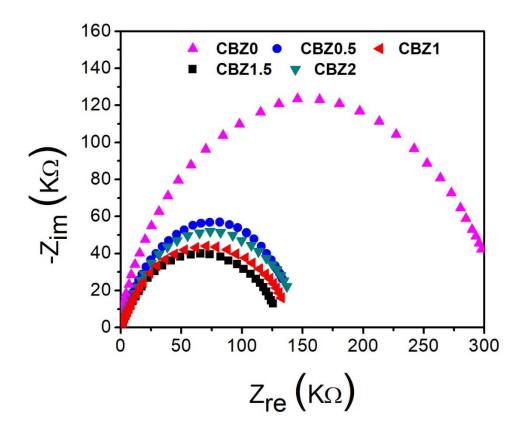


Fig. S5. Nyquist impedance plots of the different prepared samples.

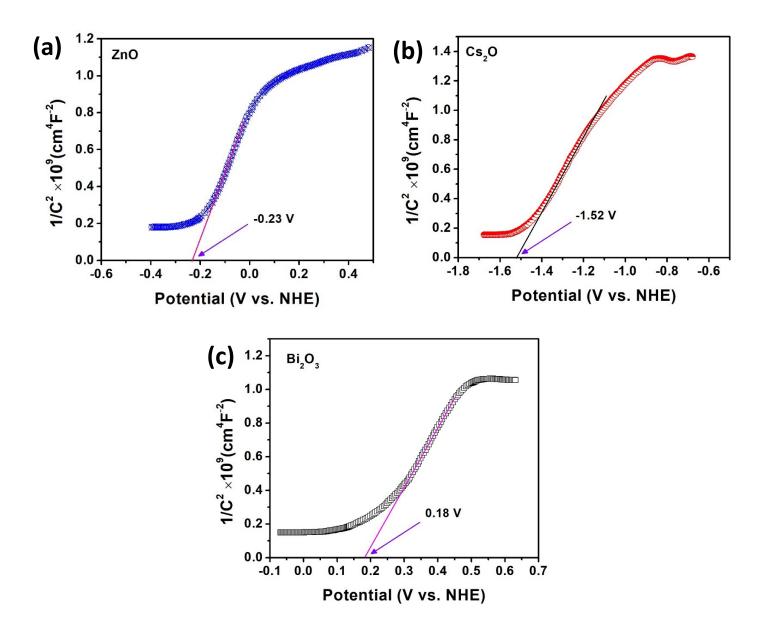


Fig. S6 Mott-Schottky plots for pristine (a) ZnO, (b) Cs₂O, and (c) Bi₂O₃.

The photocatalytic water splitting of Cs₂O under simulated sunlight irradiation (AM 1.5 G) in the absence of sacrificial agents (pure water) and in the presence of methanol and glycerol was measured and the results were presented in Figure S7. No H₂ molecules were detected in the absence of sacrificial agents. However, hydrogen production was 232 μ molg⁻¹h⁻¹ in the presence of methanol (50% (v/v) methanol/water) and 556 μ molg⁻¹h⁻¹ in the presence of glycerol (25% (v/v) glycerol/water). The higher hydrogen production rate in the presence of glycerol than methanol is attributed to higher polarity of glycerol.⁶ CBM of Cs₂O (-1.55 eV) is suitable to produce H₂ but it VBM (0.41 eV) is not suitable to produce O₂, therefore, Cs₂O was unable to split pure water in the absence of sacrificial agents. Sacrificial agents react with holes to reduce the electron-hole recombination and increase the photocatalytic activity of Cs₂O.

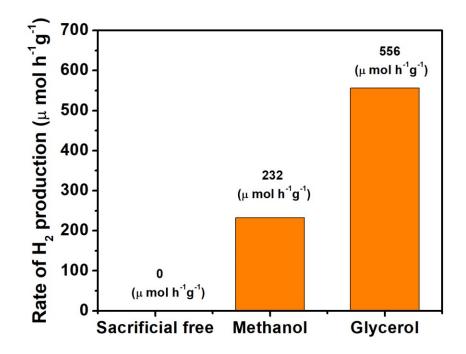


Fig. S7 Photocatalytic hydrogen production activity of pure Cs₂O in the absence of sacrificial agents and in the presence of methanol and glycerol under simulated sunlight irradiation (AM 1.5 G).

To further explore the impact of Cs₂O, the photocatalytic hydrogen production experiment was repeated using Bi_2O_3 -ZnO as a photocatalyst in the presence of different sacrificial agents including methanol, glycerol, and triethanolamine (TEOA) solution. No H₂ was detected in each experiment. The formation of a junction between Bi_2O_3 and ZnO makes Bi_2O_3 -ZnO unable to produce H₂ even after adding sacrificial agents. This happens as the electrons are accumulated in the CB of Bi_2O_3 which is more positive compared to H⁺/H₂. Thus, Cs₂O played a significant role in enhancing the photocatalytic activity of Cs₂O-Bi₂O₃-ZnO heterostructure through constructing a Z-scheme system with Bi₂O₃ and ZnO and extending its light absorption range.

Sample	Bi	Zn	Cs	0	Total	Bi:Zn
CBZ0 (Bi2O3- ZnO)	25.39 atom %	17.82 atom %	0 atom %	56.79 atom %	100 atom %	1:0.702
CBZ1.5 (Cs2O- Bi2O3-ZnO)	21.78 atom %	15.32 atom %	0.67 atom %	62.23 atom %	100 atom %	1:0.703

Table S1. Elemental analysis of Bi_2O_3 -ZnO and Cs_2O - Bi_2O_3 -ZnO heterostructures

Table S2. Overall water splitting using different samples under simulated sunlight irradiation Am 1.5 G.

Sample	H ₂ (μ mol h ⁻¹ g ⁻¹)	$O_2 (\mu mol h^{-1} g^{-1})$
CBZ0	0	0
CBZ0.5	65.2	31.9
CBZ1	123.9	62.1
CBZ1.5	149.5	73.2
CBZ2	97.8	47.7

	Z-scheme systems with co-catalys	st and or electr	rons mediator for Overall			1	
Entry	Photocatalyst	AQE	Activity	Conditions of photocatalytic reaction	Electrons Mediator	Co- Catalyst	Ref
1	MgTa ₂ O _{6-x} N _y /TaON/PtO _x -WO ₃	6.8% at 420 nm	H ₂ : 480 μmol h ⁻¹ g ⁻¹ O ₂ : 250 μmol h ⁻¹ g ⁻¹	$\begin{array}{l} \lambda > 420 \text{ nm} \\ (\text{Xenon lamp,} \\ 300 \text{ W}) \\ 9.1 \text{x} 10^{21} \\ \text{photon } \text{h}^{-1} \end{array}$	Yes	Yes	<i>Angew.</i> <i>Chem.</i> Int. Ed. 2015, 54 8498 –8501
2	SrTiO3:La,Rh/Au/BiVO4	5.9% at 418 nm	H ₂ : 2100 μmol h ⁻¹ g-1 O ₂ : 1000 μmol h ⁻¹ g ⁻¹	λ> 420 nm (Xenon lamp, 300 W)	Yes	Yes	<i>J. Catal.</i> 2015, 328, 308–315
3	RhCrO _x /ZrO2/LaMg _{1/3} Ta _{2/3} O ₂ N)/ Au/BiVO ₄ :Mo	0.07% at 418 nm	H ₂ : 60 μmol h-1 g-1 O ₂ : 30 μmol h-1 g-1	λ > 420 nm (Xenon lamp, 300 W), pure water	Yes	Yes	<i>ACS Catal.</i> 2016, 6, 7188–7196
4	Pt/CuGaS ₂ /RGO/BiVO ₄ /CoO _x	-	H ₂ : 35 μmol h ⁻¹ O ₂ : 17 μmol h ⁻¹	λ> 420 nm (Xenon lamp, 300 W),	Yes	Yes	<i>J. Am.</i> <i>Chem. Soc.</i> 2016, 138, 10260–1026 4
5	Ta ₃ N ₅ /BaTaO ₂ N	0.1% at 420 nm	H ₂ : 3.2 μmol h ⁻¹ O ₂ : 1.6 μmol h ⁻¹	λ> 420 nm (300 W xenon lamp)	Yes	Yes	<i>Chem. Sci.</i> , 2017, 8 , 437-443
6	Ru loaded SrTiO3:La, Rh/BiVO4:Mo	19% at 419 nm	H ₂ : 3200 μmol h ⁻¹ g ⁻¹ O ₂ : 1600 μmol h-1 g-1	λ > 420 nm (300 W xenon lamp), pure water	Yes	Yes	<i>J. Am.</i> <i>Chem. Soc.</i> 2017, 139, 1675–1683
7	RuO2/TiO2:Ta /N, Ru/SrTiO3:Rh	0.5% at 420 nm	-	NaIO3 or FeCl3(1mM) solution	Yes	Yes	<i>J. Mater.</i> <i>Chem. A</i> , 2017, 5 , 18870-18877
8	MoS ₂ /CdS, Co ₂ O ₃ /BiVO ₄	1.04% at 420 nm	H ₂ : 14.5 μmol h-1 O ₂ :7.1 μmol h-1	λ > 420 nm (300 W xenon lamp, output intensity of 200 mW/cm ²),	Yes	No	<i>J. Mater.</i> <i>Chem. A</i> , 2017, 5 , 21205-21213
	Mediator a	nd Co-Catalys	sts-Free Direct Z-scheme s	systems for Overal	l water split	ting	
	Photocatalyst	AQE	Activity	Conditions of photocatalytic reaction	Electrons Mediator	Co- Catalyst	Ref
9	Co ₃ (PO ₄) ₂ /α-Fe ₂ O ₃	-	H ₂ : 0.63 μmol h ⁻¹ O ₂ : 0.32 μmol h ⁻¹	400 nm < λ < 700 nm (LED),	No	No	<i>Catal. Sci.</i> <i>Technol.</i> , 2018, 8 , 840-

Table S3. Summary of the recent Z-scheme photocatalysts for overall water splitting.

				Pure water			846
10	Bi ₂ WO ₆ -Cu ₃ P	-	H ₂ : 9.3 µmol/gcatalyst and 4.6 O ₂ :µmol/gcatalyst	AM 1.5G simulated sunlight with 100 mW cm ⁻² , Na ₂ HPO ₄ NaH ₂ PO ₄ solution	No	No	Nanoscale, 2018, 10 , 3026-3036
11	Si/MgTiO ₂	-	H ₂ : 159.33 μmol g ⁻¹ h ⁻¹	>420 nm (Xenon lamp, 300 W), pure water	No	No	<i>Int. J.</i> <i>Hydrogen</i> <i>Energy</i> , 2016, 41 , 14713– 14720
12	Black Phosphorus/BiVO ₄	0.89% at 420 nm	$\begin{array}{l} H_2:\!160\;\mu\text{mol}\;g^{\text{-1}}\;h^{\text{-1}}\\ O_2:\;102\;\mu\text{mol}\;g^{\text{-1}}\;h^{\text{-1}} \end{array}$	420 nm (Xenon lamp, 320W), Pure water	No	No	Angew. Chem. Int. Ed. 2018, 57, 2160
13	Cs ₂ O-Bi ₂ O ₃ -ZnO		H ₂ :149.5 μmol g ⁻¹ h ⁻¹ O ₂ : 73.2 μmol g ⁻¹ h ⁻¹	AM 1.5G simulated sunlight with 100 mW cm ⁻²	No	No	The present work

Semiconductor	χ (eV)	Eg (eV)	CBM (eV)	VBM (eV)
Cs ₂ O	3.89	1.96	-1.59	0.37
Bi ₂ O ₃	5.99	2.74	0.12	2.86
ZnO	5.79	3.1	-0.26	2.84

Table S4. Calculations of VBM and CBM from Tauc plot.

Table S5. Calculations of VBM and CBM using VB-XPS analysis.

Semiconductor	Eg (eV)	CBM (eV)	VBM (eV)	
Cs ₂ O	1.96	-1.55	0.41	
Bi ₂ O ₃	2.74	0.15	2.89	
ZnO	3.10	-0.28	2.82	

Table S6. Calculations of VBM and CBM from Mott-Schottky plots.

Semiconductor	Eg (eV)	CBM (eV)	VBM (eV)
Cs ₂ O	1.96	-1.52	0.44
Bi ₂ O ₃	2.74	0.18	2.92
ZnO	3.1	-0.23	2.87

References

- 1 A. Band, A. Albu-Yaron, T. Livneh, H. Cohen, Y. Feldman, L. Shimon, R. Popovitz-Biro, V. Lyahovitskaya and R. Tenne, *J. Phys. Chem. B*, 2004, **108**, 12360–12367.
- 2 Y. Liu, Z. H. Kang, Z. H. Chen, I. Shafiq, J. a Zapien and I. Bello, *Cryst. Growth Des.*, 2009, 9, 3222–3227.
- 3 S. Sood, A. Umar, S. Kumar Mehta and S. Kumar Kansal, *Ceram. Int.*, 2015, **41**, 3355–3364.
- 4 Y. C. Ma, Y. H. Guo, H. Y. Jiang, D. Qu, J. Liu, W. K. Kang, Y. Yi, W. Zhang, J. S. Shi and Z. Z. Han, New J. Chem., 2015, 39, 5612–5620.
- 5 A. Hezam, K. Namratha, Q. A. Drmosh, Z. H. Yamani and K. Byrappa, Ceram. Int., 2017, 43, 5292–5301.
- 6. G. Sadanandam, K. Lalitha, V. D. Kumari, M. V. Shankar and M. Subrahmanyam, *Int. J. Hydrogen Energy*, 2013, **38**, 9655–9664.