Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supplementary data

Complete Dehydrogenation of $N_2H_4BH_3$ with NiM-Cr₂O₃ (M =

Pt, Rh, Ir) Hybrid Nanoparticle

Jianmin Chen,^a Zhang-Hui Lu^{*},^a Qilu Yao,^a Gang Feng,^b Yan Luo^c

^aInstitute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi

Normal University, Nanchang, 330022, China

^bCollege of Chemistry, Nanchang University, Nanchang 330031, China

^cDepartment of Chemical Engineering, West Virginia University, WV 26506, United States

*Email:luzh@jxnu.edu.cn

Chemicals and materials

Potassium tetrachloroplatinate(II) (K₂PtCl₄, J&K Chemical Reagent Co., 99.95%), iridium(III) chloride trihydrate (IrCl₃·3H₂O, Aladdin Industrial Inc, Ir > 52 wt%), rhodium(III) chloride trihydrate (RhCl₃·3H₂O, Aladdin Industrial Inc, Rh: 38.5-42.5 wt%), ruthenium(III) chloride hydrate (RuCl₃·xH₂O, Aladdin Industrial Inc, Ru: 38.0-42.0 wt%), sodium tetrachloropalladate (Na₂PdCl₄, Aladdin Industrial Inc, 98%), nickel(II) chloride hexahydrate (NiCl₂·6H₂O, Sinopharm Chemical Reagent Co., 98%), iron(II) sulfate heptahydrate (FeSO₄·7H₂O, Sinopharm Chemical Reagent Co., 98%), cobalt(II) chloride hexahydrate (CoCl₂·6H₂O, Aladdin Industrial Inc, 98%) chromium(III) nitrate nonahydrate (Cr(NO₃)₃·9H₂O, Aladdin Industrial Inc, 99.95%), polyvinylpyrrolidone (PVP, Aldrich, 95%), sodium borohydride (NaBH₄, Aldrich, 99.9%), sodium hydroxide (NaOH, Nanchang Chemical Works, 96%) 1,4-dioxane (J&K Chemical Reagent Co., Ltd., 99.8%), hydrazine hemisulfate salt (N₂H₄·1/2H₂SO₄, Aldrich), and n-pentane (Aldrich, 99.5%) were used as received. Ultrapure water with a specific resistance of 18.3 MΩ cm was obtained by reversed osmosis followed by ion exchange and filtration.

Preparation of hydrazine borane (N₂H₄-BH₃, HB)

HB was synthesized according to the previous reports [14,34-35]. Typically, 21.42 g of hydrazine hemisulfate salt ($N_2H_4 \cdot 1/2H_2SO_4$) and 10 g of NaBH₄ were added into 80 mL of anhydrous dioxane and stirred at room temperature under an atmosphere of dry Argon for 48 h. The resulting slurry was immediately centrifuged to obtain the clear solution. Subsequently, the filtrate was evaporated by vacuum dryer at 50 °C overnight to obtain the raw HB, which was further washed with n-pentene. The obtained material was a white solid, and its purity was verified by our previous reports [44,45].

Calculation method:

$$TOF = \frac{n_{\rm H_2}}{n_{\rm (metal)} \times t} \qquad (S1)$$

Where n_{H2} is the mole number of generated H_2 , $n_{(metal)}$ is the total mole number of Ni and Pt in catalyst and t is the completed reaction time in hour.

Fig. S1 XRD pattern of the as-synthesized $Ni_{0.9}Pt_{0.1}$ - Cr_2O_3 NPs.

Fig. S2 TEM images of $Ni_{0.9}Pt_{0.1}$ - Cr_2O_3 nanocatalysts before (a and c) and after (b and d) six catalytic runs.

Fig. S3 Time course plots for the dehydrogenation of aqueous solution HB catalyzed by $Ni_{0.9}Pt_{0.1}$ -(Cr_2O_3)_x with different molar contents (x = 1/2*[Cr/(Ni + Pt+ Cr)]) of Cr_2O_3 (n_{NiPt} : $n_{HB} = 0.1$, NaOH = 0.5 M, T = 50 °C).

Fig. S4 Time course plots for the dehydrogenation of aqueous solution HB over $Ni_{0.9}Pt_{0.1}$ - Cr_2O_3 NPs with different concentration of NaOH. The insert is the corresponding TOF over $Ni_{0.9}Pt_{0.1}$ - Cr_2O_3 NPs with different concentration of NaOH $(n_{NiPt} : n_{HB} = 0.1, T = 50 \text{ °C}).$

Fig. S5 (a) Time course plot for the dehydrogenation of aqueous solution HB over $Ni_{0.9}Pt_{0.1}$ -Cr₂O₃ NPs at 30, 35, 40, 45, and 50 °C ($n_{NiPt} : n_{HB} = 0.1$, NaOH = 0.5 M); (b) Plot of ln k versus 1/T for hydrogen generation from hydrolysis of the BH₃ group (Part 1) and decomposition of the N₂H₄ moiety (Part 2) of N₂H₄BH₃.

Fig. S6 Time course plots for the dehydrogenation of aqueous solution HB over $Ni_{0.9}Pt_{0.1}$ and $Ni_{0.9}Pt_{0.1}$ -MO_x NPs (M = Cr, Mo, W, and Mn) (n_{NiPt} : n_{HB} = 0.1, n_{MOx} : $n_{(NiPt + MOx)}$ = 0.06, NaOH = 0.5 M, T = 50 °C).

Fig. S7 Time course plots for the dehydrogenation of aqueous solution HB catalyzed by (a) $Ni_{1-x}Rh_x$ - Cr_2O_3 , (b) $Ni_{1-x}Ir_x$ - Cr_2O_3 , (c) $Ni_{1-x}Pd_x$ - Cr_2O_3 , and (d) $Ni_{1-x}Ru_x$ - Cr_2O_3 NPs (n_{metal} : $n_{HB} = 0.1$, NaOH = 0.5 M, T =50 °C, Cr_2O_3 : 3.0 mol%).

Fig. S8 XRD patterns of the as-synthesized $Ni_{0.6}Rh_{0.4}$ and $Ni_{0.6}Rh_{0.4}$ -Cr₂O₃ samples.

Fig. S9 The high resolution XPS spectra of (a) Rh 3d, (b) Ni 2p for $Ni_{0.6}Rh_{0.4}$ and $Ni_{0.6}Rh_{0.4}$ -Cr₂O₃ nanocatalyst after argon etching 5 min, respectively.

Fig. S10 Nitrogen isotherms recorded at 77 K for $Ni_{0.6}Rh_{0.4}$ and $Ni_{0.6}Rh_{0.4}$ -Cr₂O₃ NPs.

Fig. S11 Time course plots for the dehydrogenation of aqueous solution HB catalyzed by $M_{0.9}Pt_{0.1}$ -Cr₂O₃ (M = Ni, Fe, and Co) (n_{metal} : n_{HB} = 0.1, NaOH = 0.5 M, T = 50 °C).

Fig. S12 Time course plots for the dehydrogenation of aqueous solution of (a) N_2H_4 and (b) AB catalyzed by Cr_2O_3 , $Ni_{0.9}Pt_{0.1}$, and $Ni_{0.9}Pt_{0.1}$ - Cr_2O_3 (n_{metal} : $n_{N2H4} = 0.1$, n_{metal} : $n_{AB} = 0.1$).

Fig. S13 Time course plots for the dehydrogenation of aqueous solution HB over (a) $Ni_{0.6}Rh_{0.4}$ - Cr_2O_3 and (b) $Ni_{0.9}Ir_{0.1}$ - Cr_2O_3 ($n_{metal} : n_{HB} = 0.1$, NaOH = 2.0 M, 50 °C) at sequential runs by the addition of equivalent molar amounts of HB.

Catalyst	Tem	n(metal)/	n(H ₂ +N ₂)/n	TOF	Ref.
	•	n(HB)	(HB)	(h ⁻¹)	
	(°C)				
Ni _{0.6} Pt _{0.4} /MSC-30	30	0.1	5.95 ± 0.05	662 ^a	46
Ni ₅ @Pt	50	0.04	4.4	2.3ª	43
Ni _{0.89} Ir _{0.11}	50	0.14	4.9	9.5ª	42
Ni _{0.89} Rh _{0.11}	50	0.16	5.1	9.9ª	42
$Ni_{0.89}Pt_{0.11}$	50	0.14	5.79	18 ^a	40
$Ni_{0.77}Ru_{0.23}$	50	0.15	4.0	23.3ª	42
Ni@Rh ₄ Ni	50	0.1	5.74	72 ^a	45
Rh ₄ Ni NPs	50	0.1	5.8	90 ^a	44
CuNiMo	50	0.2	6.0	108 ^b	56
NiPt-CeO ₂	50	0.1	5.74	234 ^b	50
Ni _{0.9} Pt _{0.1} /graphene	50	0.1	6.0	240 ^b	51
Rh _{0.8} Ni _{0.2} @CeOx/rGO	50	0.1	6.0	667 ^b	49
$Ni_{0.9}Pt_{0.1}$ - Cr_2O_3	50	0.1	6.0	1200	This study
$Ni_{0.3}Pt_{0.7}$ - Cr_2O_3	50	0.1	6.0	3093	This study
Ni _{0.5} Fe _{0.5} -CeO _x /MIL-101	70	0.2	6.0	351.3 ^b	57
CuNiMo	70	0.2	6.0	484 ^b	56

Table S1. Catalytic activities for dehydrogenation of hydrazine borane catalyzed by different catalysts.

^aThe total TOF values were calculated according to the original data provided by the reports, in which the TOF values were not provided.

^bThe total TOF values were provided by the reports.