Supporting Information for

Sub-5 nm SnO₂ Chemically Coupled Hollow Carbon Spheres for Efficient Electrocatalytic CO₂ Reduction

Yiliguma,^a Zhijie Wang,^a Chao Yang,^a Anxiang Guan,^a Longmei Shang,^a Abdullah M. Al-Enizi,^b

Lijuan Zhang,^a Gengfeng Zheng*a

^aLaboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of

Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China

^bDepartment of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

* Corresponding author E-mail: gfzheng@fudan.edu.cn

				Active sites		
Catalyst	Electrochemical CO ₂ RR conditions	Highest CO ₂ RR activity	Stability	regarding Sn oxidation states	Loading of SnO _x	Ref.
SnO ₂ /C	H-cell, CO ₂ sat. 0.1 M KHCO ₃ aqueous solution, pH 6.8	FE (HCOO ⁻): ~ 54% (-3.7 mA cm ⁻²) , FE (CO): ~ 22% (-1.4 mA cm ⁻²) @ -0.9 V vs RHE	After 12 h @ -0.9 V vs RHE, FE (HCOO ⁻) decreased from 64% to 49%	SnO ₂ (JCPDS #41- 1445), SnO (JCPDS #07-0195)	SnO ₂ : 0.07 mg cm- ²	This work
Sn/SnO _x film	H-cell, CO_2 sat. 0.5 M NaHCO ₃ aqueous solution	FE (CO): ~ 5-10% and FE (HCOOH): ~ 19% @ -0.7 V vs RHE (j _{tot} -0.4 ~ -0.6 mA cm ⁻²)	/	Sn/SnO _x interface or SnO _x surface (SnO _x JCPDS # not specified)	/	S1
Hierarchical mesoporous SnO ₂ Nanosheets on carbon cloth	H-cell, CO ₂ sat. 0.5 M NaHCO ₃ aqueous solution, pH 7.2	FE (HCOO ⁻): 87% @ - 1.6 V vs Ag/AgCl (3 M KCl) (j _{tot} -50 mA cm ⁻²)	After 24 h @ -1.6 V vs Ag/AgCl (3 M KCl) FE (HCOO-): 87%	Sn or Sn/SnO _x	SnO ₂ (JCPDS #41-1445): 0.34 mg cm ⁻²	S2
SnO ₂ nanoparticles on carbon aerogels	Gas diffusion electrode, H-cell, CO ₂ sat. 1.0 M KHCO ₃ aqueous solution, pH 7.5	FE (HCOO ⁻): ~76% @ - 0.96 V vs RHE (j _{tot} -14 ~ -17 mA cm ⁻²)	After 12 h @ -0.96 V vs RHE FE (HCOO [.]): 66%	/	SnO ₂ (JCPDS #41-1445): 0.56 mg cm ⁻²	S3
SnO ₂ nanoparticles on carbon black	H-cell, CO ₂ sat. 0.1 M NaHCO ₃ aqueous solution	FE (HCOO ⁻): 86.2% @ -1.8 V vs SCE (j _{tot} -5.4 mA cm ⁻²)	/	/	SnO ₂ (Rutile): 0.015 mg cm ⁻²	S4
SnO ₂ nanoparticles on reduced graphene oxide	H-cell, CO ₂ sat. 0.1 M NaHCO ₃ aqueous solution	FE (HCOO-): 93.6% @ -1.8 V vs SCE (j _{tot} -10.2 mA cm ⁻²)	/	/	SnO_2 (Rutile): 0.015 mg cm ⁻²	\$5
SnO _x / gas diffusion layer	H-cell, CO ₂ sat. 0.5 M KHCO ₃ aqueous solution	FE (HCOO ⁻): 87.1% @ -1.6 V vs SHE (j _{tot} -10 mA cm ⁻²)	After 20 h @ -1.6 V vs SHE FE (HCOO ⁻): 70.2%	SnO ₂ (JCPDS #46- 1088), SnO (JCPDS #06-0395)	SnO _x : 3 mg cm ⁻²	S5
SnO nanoparticles on carbon	H-cell, CO ₂ sat. 0.5 M KHCO ₃ aqueous solution	FE (CO): 37% (5 mA cm ⁻²) @ -0.66 V vs RHE; FE (HCOO ⁻): ~ 65% (25 mA cm ⁻²) @ - 0.86 V vs RHE	After 24 h @ -0.66 V vs RHE FE (CO): 30~40%, FE (HCOO ⁻): 36%	Ultra small Sn (JCPDS #04-0673) nanoparticles	SnO (JCPDS #06-0395): 0.14 mg cm ⁻²	S6
Sn ₆ O ₄ (OH) ₂ nanoparticles on carbon black	Custom made cell capable of in situ AT-IR spectroscopic measurement during CO ₂ RR, CO ₂ sat. 0.1 M K ₂ SO4 aqueous solution, pH 4.4	FE (HCOO ⁻): 70% @ - 1.8 V vs RHE (current density not specified)	/	Sn ²⁺ oxyhydroxide (JCPDS #46-1486)	Sn ₆ O ₄ (OH) ₂ : 0.57 mg cm ⁻²	S7
SnO ₂ nanoparticles	Cell capable of in operando	FE (HCOO ⁻): ~80% in a	/	SnO ₂ (JCPDS #41-	0.5 mg cm ⁻²	S8

Table S1. Summary of our and previously reported tin oxide based catalytic CO₂RR.

graphene oxide CO ₂ RR, CO ₂ dissolved NaOH, pH 9.7	1 0.5 M from -0.9 to -1.2 V	V. V.C	
NaOH, pH 9.7		v vs	reduced graphene
	Ag/AgCl (3 M KCl))	oxide)
	$(j_{tot}$ -4.7 mA cm ⁻² @	-1.5	
	V vs Ag/AgCl)		

Table S2. Summary of Sn 3d, O 1s and C 1s binding energies and Sn:O atomic ratios in SnO_2/C and SnO_x hollow spheres.

		SnO _x	С	SnO ₂ /C
Binding Energy / eV	Sn 3d _{5/2}	486.5	-	487.6
	O 1s	530.4	533.6	532.0
	C 1s	-	284.8	284.8
Molar Ratio	Sn:O	1:2.7	-	1:6.0
	Sn:O _{Latt}	1:1.0	-	1:0.16

Methods

Calculation of ratio of turnover frequencies

 $TOF = \overline{n \times N \times 1.602 \times 10^{-19}}$ (*J*: catalytic current density, *n*: the numbers of electrons involved in the electrochemical reaction, *N* the areal density of active sites)^{S9}

In our experiment, SnO_2/C and SnO_x are active for CO_2RR to produce formate and CO, both of which are 2 electron transfer reactions. Thus,

$$\frac{TOF_{Sn02/C}}{TOF_{Sn0x}} = \frac{J_{Sn02/C} \times N_{Sn0x}}{J_{Sn0x} \times N_{Sn02/C}}$$

For heterogeneous catalysts, it is difficult to obtain the absolute value of N. Here, we do not consider the difference of crystalline structure between SnO_2/C and SnO_x (since they are similar) and assume SnO_2 and SnO_x nanoparticles completely cover the surface of both hollow structures. Then, the ratio of their double layer capacitances would be the ratio of their ECSA as well as ratio of the numbers of their active sites. Thus,

$$\frac{TOF_{Sn02/C}}{TOF_{Sn0x}} = \frac{J_{Sn02/C} \times N_{Sn0x}}{J_{Sn0x} \times N_{Sn02/C}} = \frac{J_{Sn02/C} \times C_{dl Sn0x}}{J_{Sn0x} \times C_{dl Sn02/C}}$$

At -0.9 mA cm^{-2} under CO₂RR condition, J_{CO2RR} for SnO₂/C and SnO_x were -5.1 and 0.19 mA cm^{-2} . Therefore,

 $\frac{TOF_{Sn02/C}}{TOF_{Sn0x}} = \frac{J_{Sn02/C} \times C_{dl Sn0x}}{J_{Sn0x} \times C_{dl Sn02/C}} = \frac{5.1 \times 1}{0.19 \times 22} = 1.22$

Supplementary Figures

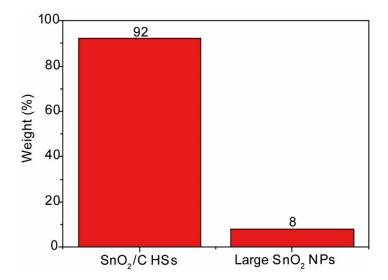


Figure S1. Estimated weight ratio of SnO_2 in SnO_2/C hollow spheres and with large particle size by XRD analysis.

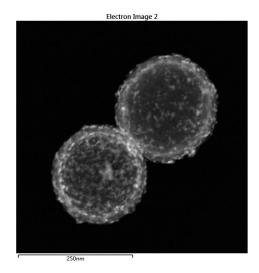
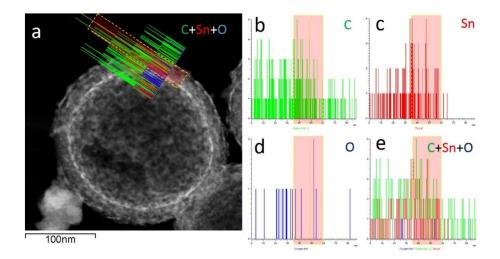



Figure S2. Dark-field STEM image of SnO₂/C hollow spheres.

Figure S3. (a) Dark-field STEM image of one typical SnO₂/C hollow structure with the-line scan EDS across its wall. Yellow dashed rectangle area is put to highlight the elemental concentrations along direction of the wall thickness. Green (b), red (c) and blue (d) line heights indicate the concentrations of carbon, tin and oxygen elements. The superposition of the carbon, tin and oxygen signals in (e).

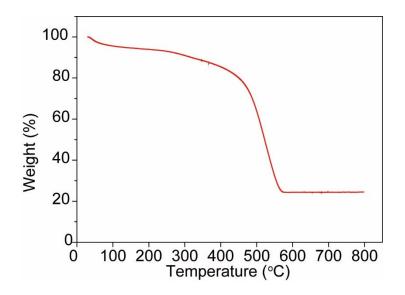


Figure S4. TGA curve of SnO₂/C hollow spheres under air with a ramp of 5 °C/min.

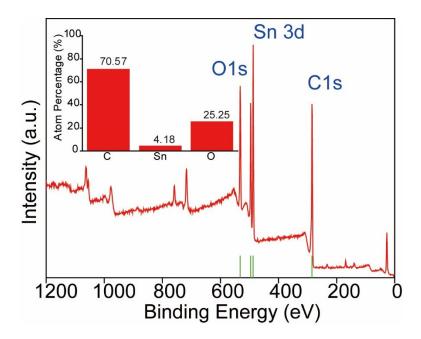


Figure S5. XPS wide spectrum of SnO₂/C hollow spheres.

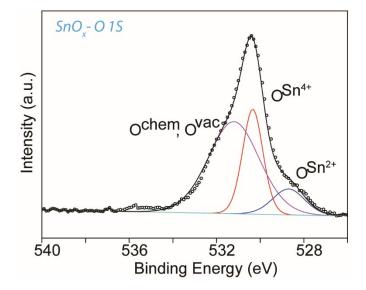


Figure S6. O 1s spectrum of SnO_x hollow spheres.

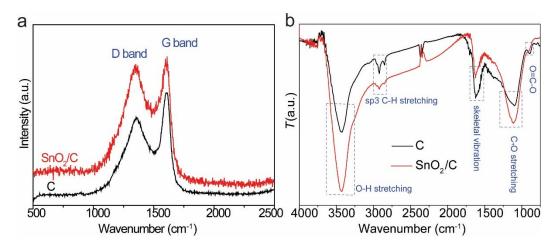
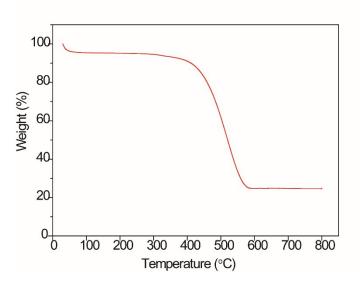



Figure S7. (a) Raman and (b) FT-IR spectra of SnO₂/C and C hollow spheres.

Figure S8. TGA curve of SnO₂/rGO under air with a ramp of 5 °C/min.

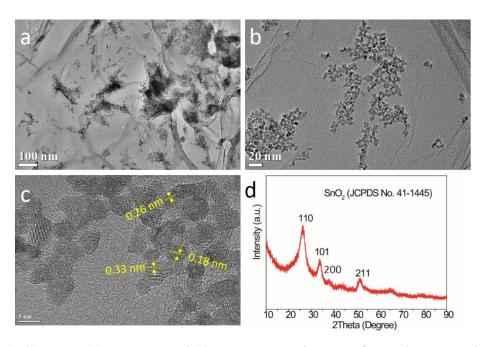


Figure S9. (a, b) TEM, (c) HRTEM and (d) XRD pattern images of SnO₂/rGO sample.

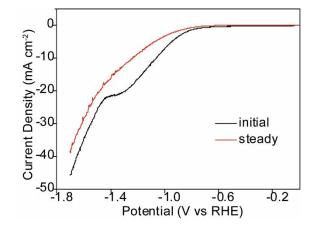


Figure S10. The first and second runs of LSV of SnO_x hollow spheres in CO₂-saturated 0.1 M KHCO₃ aqueous solution. The LSV curves after the second run are similar to the second one, therefore, we started CO₂RR test after the second run of LSV.

Figure S11. Sn 3d XPS spectrum of SnO_x hollow spheres after the first two runs of LSV.

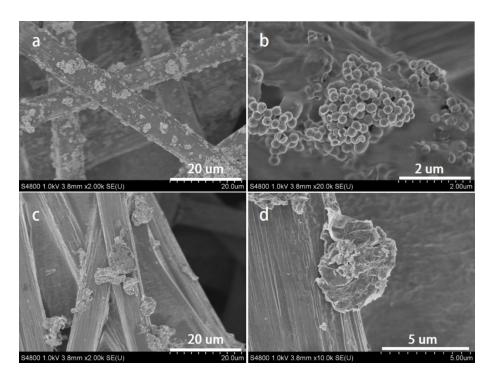


Figure S12. (a, b) SEM images of SnO_2/C hollow spheres and (c, d) SnO_2/rGO as catalysts on carbon paper electrode

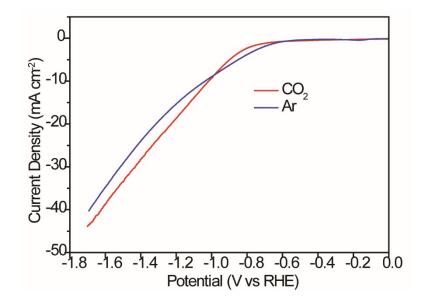


Figure S13. LSV curves of SnO₂/C in CO₂-saturated and Ar-saturated 0.1 M KHCO₃ aqueous

solutions.

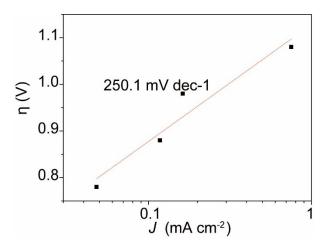


Figure S14. Tafel slope of CO₂-to-formate reaction with SnO_x hollow spheres.

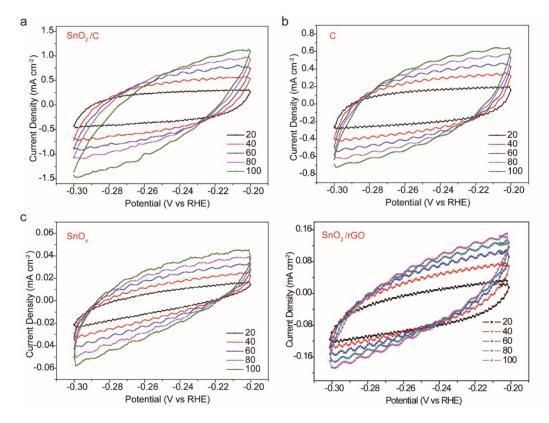


Figure S15. CV scans under different scan rates for (a) SnO_2/C , (b) C, and (c) SnO_x hollow spheres and SnO_2/rGO .

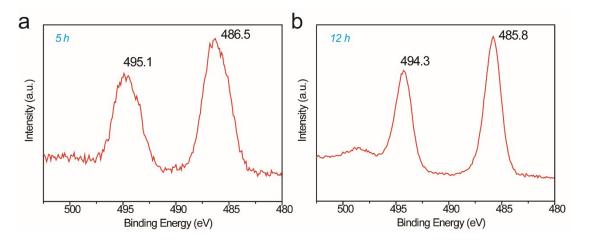
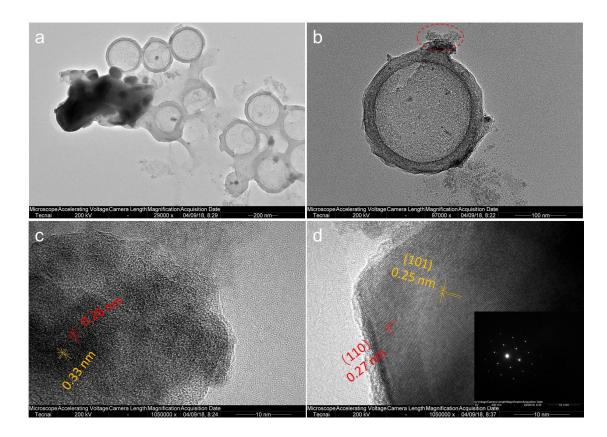



Figure S16. Sn 3d XPS spectrum of SnO₂/C hollow spheres after (a) 5 h and (b) 12 h durability

test at -0.9 V vs. RHE.

Figure S17. (a, b) TEM and (c, d) HRTEM images of SnO_2/C catalyst after 12 h durability test at -0.9 V vs RHE. In Fig. S16 a, the phase separation between carbon and Sn was observed. While the carbon hollow structure was retained after the durability test (Fig. S16a, b), the SnO_x nanoparticles agglomerated (Fig. S16b, red dashed circle, and Fig. S16c) and partial SnO_x was reduced to large size tetragonal Sn single crystals (JCPDS no. 18-1380, Fig. S16d). Under consideration of Sn 3d XPS binding energy which is closer to Sn^{2+} than Sn^{4+} , the crystal fringe distances 0.33 and 0.26 nm were assigned to SnO (JCPDS no. 07-0195) in Fig. S16c.

Reference

- S1. Chen, Y.; Kanan, M. W. Tin Oxide Dependence of the CO₂ Reduction Efficiency on Tin Electrodes and Enhanced Activity for Tin/Tin Oxide Thin-Film Catalysts. J. Am. Chem. Soc. 2012, 134 (4), 1986-1989.
- S2. Li, F.; Chen, L.; Knowles, G. P.; MacFarlane, D. R.; Zhang, J. Hierarchical Mesoporous SnO₂ Nanosheets on Carbon Cloth: A Robust and Flexible Electrocatalyst for CO₂ Reduction with High Efficiency and Selectivity. *Angew. Chem. Int. Ed.* 2017, *56* (2), 505-509.
- S3. Yu, J.; Liu, H.; Song, S.; Wang, Y.; Tsiakaras, P. Electrochemical Reduction of Carbon Dioxide at Nanostructured SnO₂/Carbon Aerogels: The Effect of Tin Oxide Content on the Catalytic Activity and Formate Selectivity. *Appl. Catal. A: Gen.* 2017, 545, 159-166.
- S4. Zhang, S.; Kang, P.; Meyer, T. J. Nanostructured Tin Catalysts for Selective Electrochemical Reduction of Carbon Dioxide to Formate. J. Am. Chem. Soc. 2014, 136 (5), 1734-1737.
- S5. Li, Y.; Qiao, J.; Zhang, X.; Lei, T.; Girma, A.; Liu, Y.; Zhang, J. Rational Design and Synthesis of SnO_x Electrocatalysts with Coralline Structure for Highly Improved Aqueous CO₂ Reduction to Formate. *ChemElectroChem* **2016**, *3* (10), 1618-1628.
- S6. Gu, J.; Héroguel, F.; Luterbacher, J.; Hu, X. Densely Packed, Ultra Small SnO Nanoparticles for Enhanced Activity and Selectivity in Electrochemical CO₂ Reduction. *Angew. Chem. Int. Ed.* 2018, 57 (11), 2943-2947.
- S7. Baruch, M. F.; Pander, J. E.; White, J. L.; Bocarsly, A. B., Mechanistic Insights into the

Reduction of CO₂ on Tin Electrodes using in Situ ATR-IR Spectroscopy. *ACS Catal.* **2015**, *5* (5), 3148-3156.

- Dutta, A.; Kuzume, A.; Rahaman, M.; Vesztergom, S.; Broekmann, P., Monitoring the Chemical State of Catalysts for CO₂ Electroreduction: An In Operando Study. *ACS Catal.* 2015, 5 (12), 7498-7502.
- S9. Voiry, D.; Fullon, R.; Yang, J.; Silva, C. C. C.; Kappera, R.; Bozkurt, I.; Kaplan, D.; Lagos, M. J.; Batson, P. E.; Gupta, G.; Mohite, A. D.; Dong, L.; Er, D.; Shenoy, V.; Asefa, T.; Chhowalla, M., The Role of Electronic Coupling Between Substrate and 2D MoS2 Nanosheets in Electrocatalytic Production of Hydrogen. *Nature Mater.* 2016, *15*, 1003-1010.