1 [Supporting information]

2	
3	Tunable fabrication of core-shell Ni-MnO ₂ hybrid foams through
4	structure-guided combustion waves for binder-free high-
5	performance supercapacitor electrodes
6	
7	Hayoung Hwang, Dongjoon Shin, Taewon Kim, Seonghyun Park, Taehan Yeo, and
8	Wonjoon Choi*
9	
10	School of Mechanical Engineering, Korea University, Seoul, Korea, 136-701
11	
12	
13	
14	* Author to whom any correspondence should be addressed.
15	E-mail: <i>wojchoi@korea.ac.kr</i> , Phone: +82 2 3290 5951, Fax: +82 2 926 9290.
16	
17	Keywords: structure guided combustion wave, organic shell, carbon shell, redox reaction,
18	MnO ₂ , supercapacitor, carbon film, combustion synthesis, amorphous carbon
19	

2 Fig. S1 Atomic percent of carbon (C) as a function of the application number of SGCWs.

3 Variation in the carbon atomic percent of the carbon-coated Ni foams as a function of the

4 number of SGCW applications. The carbon atomic percent was measured by XPS analysis.

1

2 Fig. S3 MnO₂ formation depending on the mass ratio of KMnO₄ and NH₄OH. Substituted

3 mass from carbon templates to MnO₂ coatings on Ni foams upon immersion in a KMnO₄
4 solution with different NH₄OH concentrations.

- 5
- 6

8 Fig. S4. EDS mapping of the three-times SGCW-applied core-shell Ni-MnO₂ foams. (a)

9 SEM images of the core-shell Ni-MnO₂ foams and their (b) Mn, (c) O, (d) Ni, and (e) C

Fig. S5 Electrochemical impedance spectroscopy (EIS) measurements in different volume
ratios of KMnO₄ and NH₄OH. Nyquist plots of the core-shell Ni-MnO₂ foams fabricated by
using a KMnO₄ solution with different NH₄OH concentrations.

Fig. S6 Electrochemical performance of the core-shell Ni-MnO₂ foams, fabricated by the
direct attachment of MnO₂ without applying SGCWs, and with one- and two-times
SGCWs. (a) Specific capacitances at various scan rates of 1, 2, 5, 10, 20, 50, 100, 200, and
500 mV/s. (b) EIS results. (c) Capacitance retention.

2 Fig. S7 Galvanostatic charge-discharge performance and capacitance retention of three-

- 3 times SGCW-applied core-shell Ni@MnO₂ foams at a current density of 5 A/g.
- 4
- 5

7 Fig. S8 SEM image of the surface of the three-times SGCW-applied core-shell Ni@MnO₂

- 8 foams.
- 9

Fig. S9 Ragone plots of the specific energy and power density of supercapacitors using
the three-times SGCW-applied core-shell Ni@MnO₂-based binder-free supercapacitor
electrodes with different MnO₂-based electrodes.¹⁻⁴ The specific energy and power density
of this work were obtained from the half-cell using the Ni@MnO₂-based binder-free
supercapacitor electrode.

1		References
2 3	1.	H. Lv, Y. Yuan, Q. Xu, H. Liu, YG. Wang and Y. Xia, <i>J Power Sources</i> , 2018, 398 , 167-174.
4 5	2.	Z. Li, Y. An, Z. Hu, N. An, Y. Zhang, B. Guo, Z. Zhang, Y. Yang and H. Wu, <i>J Mater Chem A</i> , 2016, 4 , 10618-10626.
6 7	3.	S. Zhu, L. Li, J. Liu, H. Wang, T. Wang, Y. Zhang, L. Zhang, R. S. Ruoff and F. Dong, <i>ACS nano</i> , 2018, 12 , 1033-1042.
8 9	4.	X. Meng, L. Lu and C. Sun, ACS Applied Materials & Interfaces, 2018, 10, 16474-16481.
10		