Highly-Efficient Overall Water Splitting Driven by All-Inorganic

Perovskite Solar Cells and Promoted by Bifunctional Bimetal

Phosphide Nanowire Arrays

Authors:

Lianbo Ma,^{a#} Wenjun Zhang,^{a#} Peiyang Zhao,^{a#} Jia Liang,^{a#} Yi Hu,^a Guoyin Zhu,^a Renpeng Chen,^a Zuoxiu Tie,^{a*} Jie Liu,^{ab} and Zhong Jin^{a*}

Affiliations:

^a Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
^b Department of Chemistry, Duke University, Durham, North Carolina 27708, USA.
[#]These authors contributed equally to this work.

*Address correspondence to: <u>zxtie@nju.edu.cn</u> (Dr. Z. Tie); <u>zhongjin@nju.edu.cn</u> (Prof. Z. Jin).

	Electrocatalysts η_{onset} η_{10} Tafel slope Stability		Stability				
Ref.	(morphology)	(mV)	(mV)	(mV/dec)	(Activity retention)	Electrolyte	
This work	Ni _{0.5} Co _{0.5} P nanowire arrays/carbon paper	10	43	46.4	Stable for 24 h	1.0 M KOH	
46	CoP nanowires/carbon cloth	38	110	129		1.0 M KOH	
47	NiCo ₂ S ₄ nanowires/carbon cloth	230		141	Almost stable for 12 h	1.0 M KOH	
48	WC nanoparticles/CNTs	16	137	106	Almost stable for 1000 cycles	1.0 M KOH	
49	NiSn@carbon	100		145	Slightly decreased after 100 cycles	1.0 M NaOH	
50	WN nanowires/carbon cloth	100	285	170		1.0 M KOH	
51	Carbon paper/carbon tubes/Co-S	50	190	131	Slightly decreased after 10,000 seconds	1.0 M KOH	
52	NiCo-P hollow nanocubes		150	61	Slightly decreased after 100 cycles	1.0 M KOH	
53	Ni-Fe/nanocarbon		219	110	Stable for 1,200 seconds	1.0 M KOH	
54	Co-Mo/Ti		75		Almost stable for 18 h	1.0 M KOH	
55	Co/N-doped carbon	~45	260	91.2	Almost stable for 10 h	1.0 M KOH	

Table S1. HER performance comparison of $Ni_{0.5}Co_{0.5}P/CP$ and other representative electrocatalysts in alkaline solutions.

Ref.	Electrocatalyst	η_{onset}	η_{10}	Tafel slope	Stability	Electrolyte
itten	(morphology)	(mV)	(mV)	(mV/dec)	(Activity retention)	
This	Ni _{0.5} Co _{0.5} P nanowire	240	2(0	50.2	04-11-0-241	
work	arrays/carbon paper	240	260	58.3	Stable for 24 h	1.0 M KOH
58	Graphene-like holey	230	300	66	Almost stable after	0.1 M KOH
	Co ₃ O ₄ nanosheets				2,000 cycles	
59	Ni ₁ Co ₄ S@N-doped carbon	200	280	64	Decrease obviously	0.1 M KOH
	frameworks	200			after 1,000 cycles	
60	NiCo-layered double	270	310	64	Decrease after 20 h	1.0 M KOH
	hydroxides/carbon fiber	270				
61	Phosphorus-doped few-layer	250	330	62	Slightly decreased	1.0 M NaOH
01	graphene	230			after 2,000 cycles	
62	CoSe ₂ /CFC	310	356	88		1.0 M KOH
	NiFe layered double				Slightly, deemagaad	
63	hydroxide/reduced graphene	240	250	91	Slightly decreased after 9 h	1.0 M KOH
	oxide nanohybrid				aner 9 n	
64	Core-Shell Ni-Co Nanowire	250	302	44	Decreased after 10 h	1.0 M KOH
64	Network	250				
65	Ni _x Co _{3-x} O _{4-y} Nanocages	300	320	53		1.0 M KOH
66	Porous carbon cloth	300	360	96	Almost stable for 27 h	1.0 M KOH
67	Porous nickel-iron bimetallic	220	260	47	Almost stable for 28 h	1.0 M KOH
	selenide nanosheets	~230				

Table S2. OER performance comparison of $Ni_{0.5}Co_{0.5}P/CP$ and other representative electrocatalysts in alkaline solutions.

Table S3. Overall water splitting performance comparison of $Ni_{0.5}Co_{0.5}P/CP$ and other electrocatalysts reported in the literatures.

Ref.	Electrocatalyst (morphology)	η ₁₀ (V)	Stability (Activity retention)	Electrolyte
This work	3D Ni _{0.50} Co _{0.50} P nanowire arrays/carbon paper	1.61	Extremely stable for 28 h	1.0 M KOH
33	NiCo ₂ S ₄ nanowire arrays/Ni foam	1.63	Decreased after 50 h	1.0 M KOH
34	Porous Co-P/NC nanopolyhedrons	1.71	Decreased after 24 h	1.0 M KOH
68	Cu _{0.3} Co _{2.7} P/nitrogen-doped carbon (NC)	1.74	Negligible catalytic deactivation after 50 h	1.0 M KOH
69	CoSe ₂ nanoparticles/carbon fiber	1.63	Stable for 30 h	1.0 M KOH
70	CoO nanoparticle-doped CoSe ₂ nanobelts	2.18	Increased for 10 h	1.0 M KOH
71	Hierarchical NiCo ₂ O ₄ hollow microcuboids	1.65	Stable for 36 h	1.0 M KOH
72	NiSe ₂ film/Ti foil	1.66	Decreased for 16 h	1.0 M KOH

Table S4. Performance comparison of the overall water splitting system driven by allinorganic PSCs with the existing photocatalysis systems.

Ref.	Photocatalysts	Solar to hydrogen efficiency (%)	
73	Te/SnS ₂ /Ag	0.49	
74	In _{0.33} Ga _{0.67} N	3.5	
75	Hexagonal CdS	3.2	
76	GaN-based nanowire arrays	1.9	
77	Mo-doped BiVO ₄ /Au layer	1.1	
78	Carbon nitride	0.12	

Fig. S1. Morphologic characterizations of control samples. SEM images of (a-c) CoP/CP and (d-f) NiP/CP.

Fig. S2. XRD patterns of control samples (CoP/CP and NiP/CP).

Fig. S3. Survey XPS spectrum of $Ni_{0.5}Co_{0.5}P/CP$. The molar ratio of Ni and Co elements is 1:0.98, consistent well with the initial molar ratio of Ni and Co source materials.

Fig. S4. (a) SEM image of pristine CP. (b) HER and (c) OER performances of pristine CP in 1.0 M KOH solution.

Fig. S5. LSV polarization curves of CoP/CP, Ni_{0.5}Co_{0.5}P/CP and NiP/CP catalysts for (a) HER and (b) OER processes.

Fig. S6. LSV polarization curves of (a) Pt/C for HER and (b) IrO₂ for OER processes.

Fig. S7. Electrochemical impedance spectroscopy (EIS) spectra of CoP/CP, $Ni_{0.5}Co_{0.5}P/CP$ and NiP/CP electrocatalysts for (a) HER and (b) OER processes.

Fig. S8. (a, b) SEM images of $Ni_{0.5}Co_{0.5}P/CP$ electrode after long-duration overall water splitting. The $Ni_{0.5}Co_{0.5}P/CP$ well retains its initial morphology and nanostructure, suggesting the high structural integrity.

Fig. S9. (a) LSV polarization curves of the overall water splitting system based on $Ni_{0.33}Co_{0.67}P/CP$ and $Ni_{0.67}Co_{0.33}P/CP$ control samples with $Ni_xCo_{1-x}P/CP||Ni_xCO_{1-x}P/CP||Ni_xCO_{1-x}P/CP||Ni_xCO_{1-x}P/CP||Ni_xCO_{1-x}P/CP||Ni_xCO_{1-x}P/CP||Ni_xCO_{1-x$

Fig. S10. The amount of generated H₂ during the long-term overall water splitting process of $Ni_{0.5}Co_{0.5}P/CP || Ni_{0.5}Co_{0.5}P/CP$ electrolyzer driven by all-inorganic PSCs.

The overall energy conversion efficiency was calculated as follows:

$$\eta_{\text{overall}} = E_{\text{H2}} / E_{\text{light}}$$

where E_{H2} represents the energy of generated H₂ driven by all-inorganic PSCs, E_{light} stands for the total energy of simulated sunlight. The η_{overall} also can be calculated below:

$$\eta_{\text{overall}} = \text{UQ} * F_{\text{electric-to-H2}} / P_{\text{sunlight}} \text{St} = \text{UIt} * F_{\text{electric-to-H2}} / P_{\text{sunlight}} \text{St}$$

During the tests, after running 6 h, the detected working voltage is about 2.21 V and the Q is about 27.93 C. $P_{sunlight}$ is 100 mW cm⁻², S is the total active area of all-inorganic PSCs for absorbing sunlight (2 × 0.18 cm⁻²).

According to Fig. S10, the mole number of generated H₂ (n) after 6 h is about 0.0549 mmol. Thus, the η_{overall} can be obtained:

 $\eta_{\text{overall}} = \text{UQ} \times (2 \times 6.02*10^{23} \times 54.9*10^{-6} \times 1.66*10^{-19}/\text{Q})/\text{P}_{\text{sunlight}}\text{St}$ Therefore, the η_{overall} can be calculated to be 3.12%.