Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supplementary material

High-performance thermoelectric bracelet based on carbon nanotube ink printed directly onto flexible cable

Kyung Tae Park^{a,b}, Jaeyoo Choi^a, Bora Lee^c, Youngpyo Ko^a, Kiyoung Jo^a, Young Mo Lee^a, Jung Ah Lim^c, Chong Rae Park^b, and Heesuk Kim^{a,d*}

^aPhoto-Electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.

*E-mail: heesukkim@kist.re.kr

^bCarbon Nanomaterials Design Laboratory, Research Institute of Advanced Materials,
Department of Materials Science and Engineering, Seoul National University, Seoul 08826,
Republic of Korea.

^cCenter for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.

^dDivision of Energy & Environment Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.

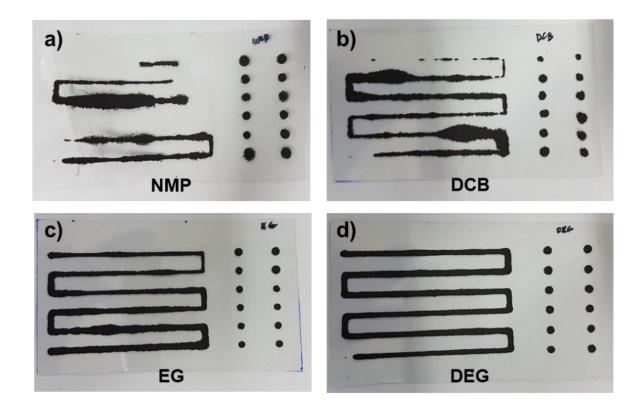
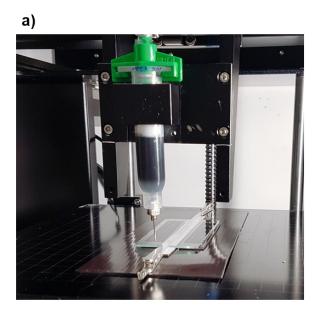

Fig. S1. Photograph of SWCNTs with hairy-like appearance used in this study.

Table S1. Thermoelectric properties of the pristine SWCNT used in this study

	Electrical conductivity (Scm ⁻¹)	Seebeck coefficient (µVK ⁻¹)	Power factor (μWm ⁻¹ K ⁻²)
SWCNT	674	39.0	103

Table S2. Viscosity of the solvents tested in this work


Solvents	Viscosity (cP)	
1,2 Dichlorobenzene (DCB)	1.32	
N-Methyl-2-pyrrolidone (NMP)	1.67	
Ethylene glycol (EG)	16.1	
Diethylene glycol (DEG)	30.2	

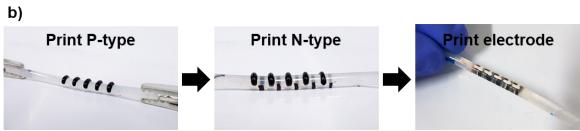
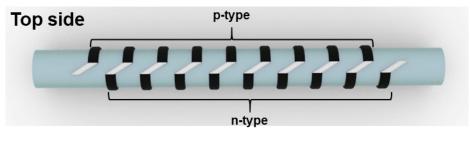


Fig. S2. Photographs showing the line and dot printing of CNT inks prepared in various solvents using ball milling ((a) NMP, (b) DCB, (c) EG and (d) DEG).


Table S3. Possible polymers to dope CNT into *n*- or *p*-type

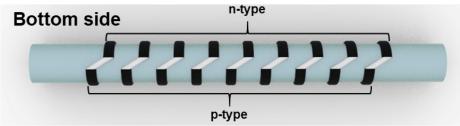

	molecular	dopant	solubility in
polymer	weight (K)	type	DEG
Poly(vinylidene fluoride) (PVDF)	534	P	X
Polystyrene (PS)	280	P	X
Poly(vinyl alcohol) (PVA)	85	P	X
Poly(methyl methacrylate) (PMMA)	15	P	X
Poly(vinyl acetate)	100	P	X
Poly(acrylic acid) (PAA)	1.8	P	O
Poly(vinyl pyrrolidone) (PVP)	10	N	O
Poly(ethylenimine) (PEI)	0.8	N	O

Fig. S3. Photograph showing **(a)** the automated printing setup and (b) the fabrication of bracelet-type TEG.

Fig. S4. Illustration showing details of how to connect *p*- and *n*-type legs in series.