Supplemental Information

Highly sensitive flexible metal-organic framework sets

a new benchmark for separating propyne from

propylene

Lifeng Yang, Xili Cui, Yuanbin Zhang, Qiwei Yang, Huabin Xing*

Unit cell parameters					
Formula sum	C20 H16 Cu F6 N8 Ti				
Formula weight	593.85 g mol ⁻¹				
Crystal system	tetragonal				
Space –group	l 4/m m m (139)				
Cell parameters	a=13.097(3) Å; c=8.628(2) Å				
Cell ratio	a/b=1.0000 b/c=1.5180 c/a=0.6588				
Cell volume	1479.97(80) Å ³				
Z	2				
Calc.density	1.33253 g cm ⁻³				

 Table S1. Crystal Structure data of TIFSIX-14-Cu-i.

Adsorbents	Surface Area	Pore Size (Å)	C₃H₄ uptake	C₃H₀ uptake	Selectivity [‡]	Ref.
	(m²/g)		(mmol g⁻¹)	(mmol g ⁻		
				¹)(1 bar)		
SIFSIX-1-Cu	1178	8.0×8.0	2.79*/8.76†	5.94	9.17	[1a]
SIFSIX-2-	585#	4.4×4.4	1.94*/4.54†	2.70	29.6	This
Cu-i						Work
SIFSIX-3-Ni	360	3.8×3.8	2.73*/2.98†	2.66	259	[1a]
TIFSIX-14-	481#	3.4×3.4 ^{&}	2.18*/3.88†	1.40	355	This
Cu-i						Work
GeFSIX-14-	463#	3.4×3.4	2.12*/3.34†	1.50	217	This
Cu-i						Work
ELM-12	-	4.0×4.2	1.83*/ 2.74†	1.43	84	[5]

Table S2. Summary of the C_3H_4 uptake, C_3H_6 uptake and selectivity on various materials.

 * the $C_{3}H_{4}$ uptake at 298 K under 0.01 bar.

 \dagger the $C_{3}H_{4}$ uptake at 298 K under 1 bar.

 \ddagger the selectivity of 1/99 C_3H_4/C_3H_6 under 298 K and 1bar.

the surface area derived from CO₂ sorption data in 196 K.

& the pore size derived from the CO_2 sorption data in 196 K.

Table S3. Langmuir-Freundlich parameters fit for C_3H_4 and C_3H_6 in TIFSIX-14-Cu-i at 298 K.

	Site A			Site B		
	q _{A sat} (mol kg⁻¹)	b _A (KPa⁻¹)	VA	q _{B sat} (mol kg ⁻¹)	b _B (KPa⁻¹)	VB
C ₃ H ₄	2.713	2.483	0.825	440.2	1.06E-5	0.963
C_3H_6	0.034	10.02	2.070	1.473	0.006	1.635

Table S4. Langmuir-Freundlich parameters fit for C_3H_4 and C_3H_6 in GeFSIX-14-Cu-i at 298 K.

	Site A	Site B				
	q _{A sat} (mol kg ⁻¹)	b _A (KPa⁻¹)	VA	q _{B sat} (mol kg ⁻¹)	b _B (KPa⁻¹)	VB
C_3H_4	2.579	0.063	0.372	2.629	3.020	1.418
C_3H_6	0.911	1.72E-21	14.08	1.805	0.003	1.117

Table S5. Langmuir-Freundlich parameters fit for C_3H_4 and C_3H_6 in SIFSIX-2-Cu-i at 298 K.

	Site A			Site B		
	q _{A sat} (mol kg ⁻¹)	b _A (KPa⁻¹)	VA	q _{B sat} (mol kg ⁻¹)	b _B (KPa⁻¹)	VB
C_3H_4	2.690	3.655	1.316	5.536	0.050	0.494
C_3H_6	3.224	0.062	0.951	0.257	3.61E-8	3.590

Figure S1. The CO₂ sorption data (solid symbols: adsorption; empty symbols: desorption) of TIFSIX-14-Cu-i at 196 K.

Figure S2. The pore size distribution of TIFSIX-14-Cu-i derived from the CO₂ BEsorption data in 196 K.

Figure S3. The XRD patterns of the synthesised and activated TIFSIX-14-Cu-i.

Figure S4. The TGA curve of TIFSIX-14-Cu-i and GeFSIX-14-Cu-i.

Figure S5. The adsorption isotherms of C_3H_4 on TIFSIX-14-Cu-i at temperature from 273 to 313 K.

Figure S6. The adsorption isotherms of C_3H_4 on GeFSIX-14-Cu-i at temperature from 273 to 313 K.

Figure S7. The adsorption isotherms of C_3H_6 on TIFSIX-14-Cu-i at temperature from 273 to 313 K.

Figure S8. The adsorption isotherms of C_3H_6 on GeFSIX-14-Cu-i at temperature from 273 to 313 K.

Figure S9. The DFT calculated configuration of bare GeFSIX-14-Cu-i and after the C₃H₄ molecule entry. (Color code: F, red; Ge, green; C, gray-40%; H, gray-25%, Cu, bright green; N, light blue).

Figure S10. The DFT calculated configuration of GeFSIX-14-Cu-i with loaded C₃H₄. (Color code: F, red; Ge, green; C, gray-40%; H, gray-25%, Cu, bright green; N, light blue).

Figure S11. The DFT calculated configuration of TIFSIX-14-Cu-i with loaded C₃H₆. (Color code: F, red; Ti, turquiose; C, gray-40%; H, gray-25%, Cu, bright green; N, light blue).

Figure S12. The DFT calculated configuration of GeFSIX-14-Cu-i with loaded C₃H₆. (Color code: F, red; Ge, green; C, gray-40%; H, gray-25%, Cu, bright green; N, light blue).

Figure S13. The concentration of C_3H_4 in the outlet gas of TIFSIX-14-Cu-i.

Figure S14. The concentration of C_3H_4 in the outlet gas of GeFSIX-14-Cu-i.

Figure S15. The C_3H_4/C_3H_6 (1/99) breakthrough experiment results of GeFSIX-14-Cu-i at the temperature of 273 K and 298 K.

Figure S16. The XRD results of TIFSIX-14-Cu-i sample after breakthrough experiment.