Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supplementary Material for Journal of Materials Chemistry A.

Supporting Information

Bifunctional CoNi/CoFe₂O₄ /Ni Foam Electrodes for Efficient Overall Water Splitting at a High Current Density

Shasha Li^{a,b,c}, Suchada Sirisomboonchai^{a,c}, Akihiro Yoshida^a, Xiaowei An^{a,c}, Xiaogang Hao^{*b}, Abuliti Abudula^c, Guoqing Guan^{*a}

- ^a Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
- ^bEnergy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki University, 2-1-3, Matsubara, Aomori 030-0813, Japan.
- ^c Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki 036-8560, Japan.

Contents:

- SEM images of Co₃O₄/NF(a) and CoNi/NF (b), and the TEM image of CoFe₂O₄
 (c, d) and CoNi NSs (e, f). (Fig. S1)
- 2. XPS spectra of flower-like CoFe₂O₄. (Fig. S2)
- 3. Original and iR-compensation polarization curves of CoNi/CoFe₂O₄/NF. (Fig. S3)
- 4. (a) HER polarization curves of CoNi/CoFe₂O₄/NF at the large current density without iR-compensation. (b) Nyquist plots (overpotential = 100 mV) for the samples. (Fig. S4)
- 5. HER polarization curves of CoNi/CoFe₂O₄/NF in 1.0 M KOH with graphite rod and Pt as the counter electrode. (The inset is the optical photograph showing the graphite rod as counter electrode of H₂ bubbles on the electrode.) (Fig. S5)
- 6. CVs of pure NF, CoNi/NF, Co₃O₄/NF, CoFe₂O₄/NF and CoNi/CoFe₂O₄/NF composite electrodes between the potential regions of 0.2 and 0.5 V (vs Hg/HgO)

with scan rates of 10, 20, 30, 50, 70, and 100 mV/s in KOH solution. (Fig. S6)

- 7. Polarization curve for overall water splitting of $CoNi/CoFe_2O_4/NF$ to show the high current density performance. (The inset is the optical photograph showing the strong generation of H₂ and O₂ bubbles on the electrodes.) (**Fig. S7**)
- Characterizations after the stability test. (a) SEM (b) High-resolution SEM images, and (c) EDS elemental mapping of the CoNi/CoFe₂O₄/NF after the overall water splitting stability test (anode for OER). (Fig. S8)

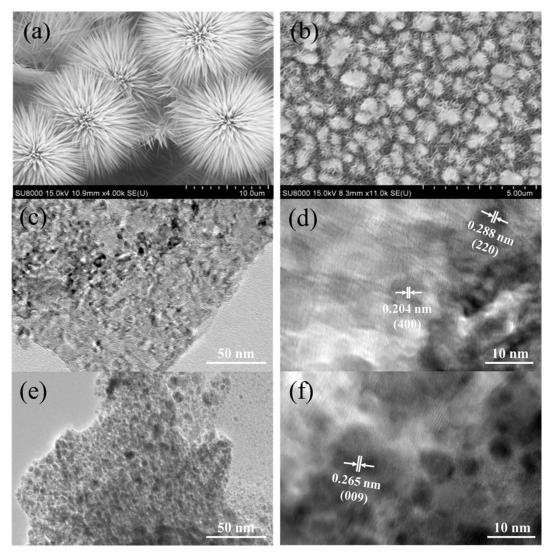
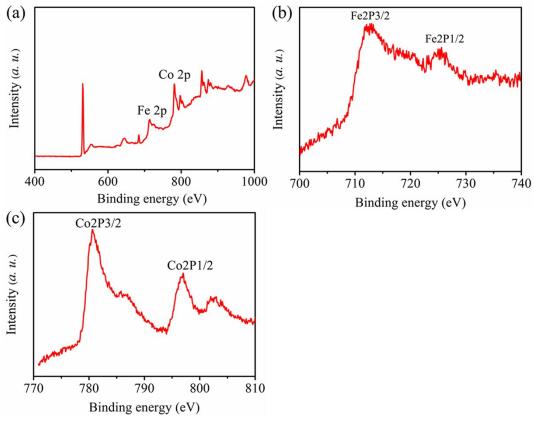
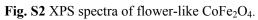




Fig. S1 SEM images of $Co_3O_4/NF(a)$ and CoNi/NF (b), and the TEM image of $CoFe_2O_4$ (c, d) and CoNi NSs (e, f).

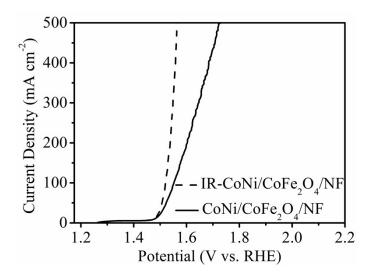
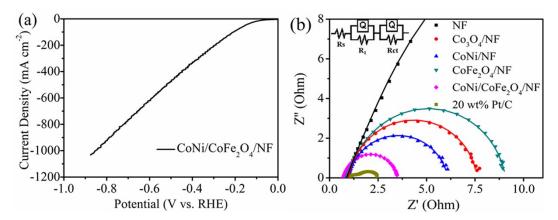



Fig. S3 Original and iR-compensation polarization curves of $CoNi/CoFe_2O_4/NF$.

Fig. S4 (a) HER polarization curves of CoNi/CoFe₂O₄/NF at the large current density without iRcompensation. (b) Nyquist plots (overpotential = 100 mV) for the samples.

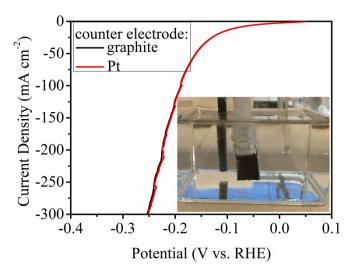
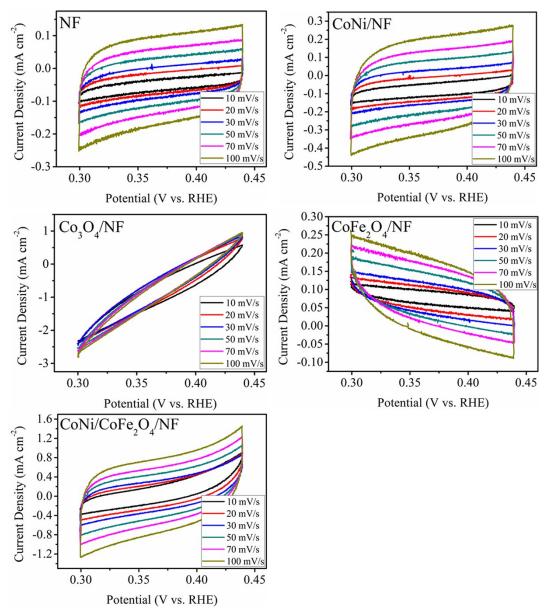



Fig. S5 HER polarization curves of $CoNi/CoFe_2O_4/NF$ in 1.0 M KOH with graphite rod and Pt as the counter electrode. (The inset is the optical photograph showing the graphite rod as counter electrode of H₂ bubbles on the electrode.)

Fig. S6 CVs of pure NF, CoNi/NF, Co₃O₄/NF, CoFe₂O₄/NF and CoNi/CoFe₂O₄/NF composite electrodes between the potential regions of 0.2 and 0.5 V (vs Hg/HgO) with scan rates of 10, 20, 30, 50, 70, and 100 mV/s in KOH solution.

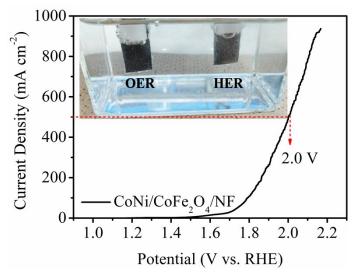
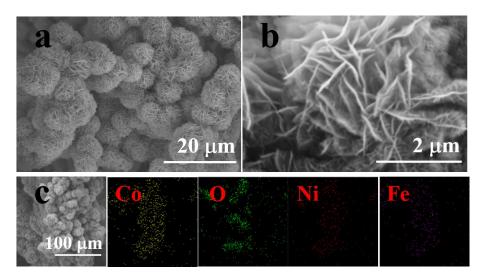



Fig. S7 Polarization curve for overall water splitting of $CoNi/CoFe_2O_4/NF$ to show the high current density performance. (The inset is the optical photograph showing the strong generation of H_2 and O_2 bubbles on the electrodes.)

Fig. S8 Characterizations after the stability test. (a) SEM (b) High-resolution SEM images, and (c) EDS elemental mapping of the $CoNi/CoFe_2O_4/NF$ after the overall water splitting stability test (anode for OER).