Supplementary Information

New Insight into the Structure of PuGaO₃ from *ab initio* Particleswarm Optimization Methodology

Shichang Li,^a Xiaoqiu Ye,^b Tao Liu,^a Tao Gao^{*a}, Shenggui Ma, ^a and Bingyun Ao^{*bc}

^a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China

^b Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 9072-35, Jiangyou 621908, China

^c Beijing Computational Science Research Center, Beijing 100094, China

Fig. S1 Dependences of the (a) band gap, (b) total energy, (c) enthalpy and (d) constant-volume specific heat on different U_{eff} for *Pnma* PuGaO₃.

^{*}Correspondence author: gaotao@scu.edu.cn (Tao Gao), aobingyun@caep.cn (Bingyun Ao)

Fig. S2 Dependences of the (a) band gap, (b) total energy, (c) enthalpy and (d) constant-volume specific heat on different U_{eff} for *Pnma* CeGaO₃.

Fig. S3 The monoclinic structure of Ga₂O₃. The lines indicate Ga–O separations shorter than 2.2 Å. Green balls are Ga, red O.

Fig. S4 The orthorhombic structures of Ga.

Fig. S5 The calculated phonon dispersion curves of $AGaO_3$ (A = Ce, Pu) in the states of AFM magnetism from PBEsol + U. (a) CeGaO3_*Pmm*, (b) CeGaO3_*P4/mmm*, (c) CeGaO3_*Pnma*, (d) PuGaO3_*Pmm*, (e) PuGaO3_*P4/mmm*, (f) PuGaO3_*Pnma*.

Fig. S6 The calculated (a) fat-band dispersions and (b) PDOS of PuGaO₃ for *Pnma* phase in the states of AFM magnetism using HSE06 method. The DOS projected onto Pu-5f, Pu-6d, Ga-4s, Ga-4p, Ga-3d, and O-2p orbitals. Energy is shifted so that the Fermi level ε_F equals to zero.

Supporting Tables

	DI	Lattice		Lattice		Wyckoff	ckoff Atomic coordinates (fractional)			Energy
Phase		Ato parameter (Å, deg)	Atom	position	Х	у	Z	(eV/f.u.)		
PuGaO ₃	Pnma	<i>a</i> =5.513	Pu	4c	0.0398	0.2500	0.9931	-33.7028		
	(No:62, Z = 4)	<i>b</i> = 7.694	Ga	4b	0.5000	0.0000	0.0000			
		c = 5.467	O_1	8d	0.2926	0. 0402	0.7085			
		$lpha=eta=\gamma=90$	O_2	4c	0.4831	0.2500	0.0782			
CeGaO ₃	Pnma	a = 5.508 b = 7.794	Ce	4c	0.0349	0.2500	0.9927	-27.1508		
	(100.02, Z - 4)	b = 7.794	Oa	4b	0.5000	0.0000	0.0000			
		<i>c</i> = 5.589	O_1	8d	0.2875	0. 0379	0.7136			
		90	O_2	4c	0.4869	0.2500	0.0715			

System	V _{xc}	Mothod	a ₀ (Å)	b ₀ (Å)	с ₀ (Å)	EMS	E _g (eV)	E (eV/f.u.)
PuGaO ₃	PBEsol+U	FM	5.533	7.691	5.477		2.32	-33.696
		AFM	5.513	7.694	5.467		2.46	-33.703
	HSE06	FM	5.465	7.635	5.419		2.51	-49.949
		AFM	5.458	7.637	5.422		2.76	-49.951
CeGaO ₃	PBEsol+U	FM	5.509	7.795	5.588		2.40	-27.145
		AFM	5.508	7.794	5.589	0.065	2.36	-27.150
	HSE06	FM	5.494	7.716	5.416		2.81	-39.633
		AFM	5.494	7.710	5.418	0.047	2.88	-39.634
		exp.[3]	5.484	7.747	5.490			
${}^{a}EMS^{2} = \frac{1}{3} \left[\left(a - a_{\exp} \right)^{2} + \left(b - b_{\exp} \right)^{2} + \left(c - c_{\exp} \right)^{2} \right]$								

Table S2. Calculated lattice constants (a_0, b_0, c_0) , the band gap (E_g) , and total energy (E) for the *Pnma* PuGaO₃ *and* CeGaO₃ through PBEsol + *U* and HSE06 methods ^{*a*}

Table S3. The optical phonon frequencies (unit:cm⁻¹) and LO-TO splitting for infrared active modes at Γ point of PuGaO₃. R represents Raman active, IR represents infrared active. The first column (e = 0) is for no electric field, the

	Modes	TO (e=0)	LO (e//x)	LO (e//y)	LO (e//z)	$\sqrt{\Delta \omega^2}$
Infrared (IR)	$B_{1u}(1)$	85.893	85.893	85.893	86.393	9.285
	$B_{1u}(2)$	150.504	150.504	150.504	160.178	54.821
	$B_{1u}(3)$	227.524	227.524	227.524	235.663	61.399
	$B_{1u}(4)$	241.834	241.834	241.834	275.758	132.509
	$B_{1u}(5)$	280.761	280.761	280.761	292.936	83.575
	$B_{1u}(6)$	311.749	311.749	311.749	312.483	21.403
	$B_{1u}(7)$	343.705	343.705	343.705	433.000	263.355
	$B_{1u}(8)$	433.000	432.100	432.100	517.492	283.388
	$B_{1u}(9)$	542.376	542.376	542.376	584.672	218.334
	$B_{2u}(1)$	128.522	128.522	152.172	128.522	81.476
	$B_{2u}(2)$	153.773	153.773	161.011	153.773	47.734
	$B_{2u}(3)$	237.264	237.264	258.746	237.264	103.223
	$B_{2u}(4)$	260.781	260.781	279.527	260.781	100.642
	$B_{2u}(5)$	323.524	323.524	473.595	323.524	345.867

e//x, e//y and e//z are for the field parallel to x, y and z principal axis, respectively. $\Delta \omega^2 = \Delta \omega_{L0}^2 - \Delta \omega_{T0}^2$

	$B_{2u}(6)$	495.810	495.810	507.685	495.810	109.162
	$B_{2u}(7)$	544.544	544.544	596.313	544.544	243.025
	$B_{3u}(1)$	86.260	86.727	86.260	86.260	8.988
	$B_{3u}(2)$	153.940	161.278	153.940	153.940	48.096
	$B_{3u}(3)$	221.620	227.157	221.620	221.620	49.849
	$B_{3u}(4)$	249.439	256.911	249.439	249.439	61.509
	$B_{3u}(5)$	263.016	287.899	263.016	263.016	117.085
	$B_{3u}(6)$	290.368	389.436	290.368	290.368	259.514
	$B_{3u}(7)$	399.043	454.048	399.043	399.043	216.620
	$B_{3u}(8)$	492.308	515.590	492.308	492.308	153.188
	$B_{3u}(9)$	516.891	574.998	516.891	516.891	251.886
Raman(R)	$A_{g}(1)$	77.787				
	$A_{g}(2)$	105.673				
	$A_{g}(3)$	197.103				
	$A_{g}(4)$	273.923				
	$A_{g}(5)$	331.063				
	$A_{g}(6)$	353.445				
	$A_{g}(7)$	434.001				
	$B_{1g}(1)$	122.285				
	$B_{1g}(2)$	188.464				
	$B_{1g}(3)$	327.961				
	$B_{1g}(4)$	352.377				
	$B_{1g}(5)$	578.334				
	$B_{2g}(1)$	84.425				
	$B_{2g}(2)$	111.677				
	$B_{2g}(3)$	205.743				
	$B_{2g}(4)$	337.167				
	$B_{2g}(5)$	409.384				
	$B_{2g}(6)$	488.305				
	$B_{2g}(7)$	604.319				
	$B_{3g}(1)$	100.470				
	$B_{3g}(2)$	293.103				
	$B_{3g}(3)$	359.349				
	$B_{3g}(4)$	430.131				
	$B_{3g}(5)$	635.974				
Silent	$A_u(1)$	62.443				
	$A_u(2)$	150.171				
	$A_{u}(3)$	176.622				
	$A_{u}(4)$	225.189				
	$A_{u}(5)$	266.785				

A _u (6)	340.302	
$A_{u}(7)$	504.483	
A _u (8)	527.565	