Supporting Information

Solvent-Mediated Length Tuning of Ultrathin Platinum-Cobalt Nanowires for Efficient Electrocatalysis

Hui Xu, ^{a1} Jingjing Wei, ^{a1} Min Zhang, ^a Caiqin Wang, ^{b*} Yukihide Shiraishi,^c Jun Guo, ^d and Yukou Du ^{a*}

^a College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China

^b College of Science, Nanjing Forestry University, Nanjing, 210000 PR China

^c Tokyo University of Science Yamaguchi, Sanyo-Onoda-shi, Yamaguchi 756-0884, Japan.

^d Testing & Analysis Center, Soochow University, Jiangsu 215123, China

* Corresponding author: Tel: 86-512-65880089, Fax: 86-512-65880089; E-mail: duyk@suda.edu.cn (Y. Du)

Hui Xu and Jingjing Wei contributed equally to this work

Figure S1. Diameter distributions of (a) Pt₃Co₁ UNWs-S, (b) Pt₃Co₁ UNWs-M, and (c) Pt₃Co₁ UNWs-L.

Figure S2. EDX patterns of (a) Pt_3Co_1 UNWs-S, (b) Pt_3Co_1 UNWs-M, and (c) Pt_3Co_1 UNWs-L.

Figure S3. EDS line-scanning profile of Pt₃Co₁ UNWs-L.

Figure S4. High-resolution XPS spectra of Pt 4f and Co 2p of (a and b) Pt₃Co₁ NWs-L, (c and d) Pt₃Co₁ NWs-M, and (e and f) Pt₃Co₁ NWs-S.

Figure S5. Representative TEM images of Pt_3Co_1 UNWs prepared in the same conditions as Pt_3Co_1 UNWs-L while replacing the (a and b) $Mo(CO)_6$ with $W(CO)_6$ or replacing glucose with (c and d) citric acid.

Figure S6. Representative TEM images of Pt_3Co_1 UNWs prepared in the same conditions as Pt_3Co_1 UNWs-L in the absence of $Mo(CO)_6$ with $W(CO)_6$ or replacing CTAC with (c and d) CTAB.

Figure S7. CV curves of Pt₃Co₁ UNWs-S, Pt₃Co₁ UNWs-M, and Pt₃Co₁ UNWs-L at different scan rates in 1.0 M KOH and 1.0 M EG solution.

Figure S8. Nyquist plots of Pt₃Co₁ UNWs-S, Pt₃Co₁ UNWs-M, and Pt₃Co₁ UNWs-L in 1.0 M KOH and 1.0 M glycerol solution at 0.8 V.

Figure S9. Representative TEM images of Pt_3Co_1 UNWs-L (a and b) before and (c and d) after long-term electrochemical measurements.

Figure S10. Representative TEM images of commercial Pt/C catalysts (a and b) before and (c and d) after long-term electrochemical measurements.

Figure S11. EDX patterns of (a) Pt_3Co_1 UNWs-S, (b) Pt_3Co_1 UNWs-M, and (c) Pt_3Co_1 UNWs-L after catalytic cycles.

Table S1 EGOR performances of Pt_3Co_1 UNWs-L and various electrocatalysts from published works.

Catalysts	Peaks cu	irrents from	Electrolyte	References
	CV curves			
	J _m	J _s		
	(A/mg)	(mA/cm ²)		
Pt ₃ Co ₁ UNWs-L	4.9	9.4	1.0 M KOH + 1.0	This work
			M EG	
Pt/Ru/XC72	0.24		0.5 M H ₂ SO ₄ +	J. Power Sources
Catalyst			0.4M EG	2011 , <i>196</i> , 1078-
				1083.
PtPd@Pt	0.23		0.5 M H ₂ SO ₄ +	Electrochim. Acta
Nanocrystals/rGO			0.5 M EG	2016 , <i>18</i> , 576-583.
PtNi _{0.67} Pb _{0.26}	0.42	0.65	0.1 M HClO ₄ +	J. Mater. Chem. A
NWs/C			0.2 M EG	2017 , <i>5</i> , 18977-
				18983
Pd ₁ Cu ₁ nanosphere	3.58		1.0 M	Electrochim. Acta
			KOH + 1.0 M EG	2018 , <i>261</i> , 521-529.
PdCuBi	0.171		1 M	J. Power Sources.
nanoparticles			KOH + 0.5 M EG	2014 , <i>249</i> , 9-12
PtCu nanocrystals	4.259		1.0 M	Int. J. Hydrogen

		KOH + 1.0 M EG	Energy 2018 , <i>43</i> ,
			1489-1496
PtRu alloy	3.052	1.0 M	Int. J. Hydrogen
		KOH + 1.0 M EG	Energy 2017 , <i>42</i> ,
			20720-20728
PdAg nanoparticle	0.169	0.1 M	Int. J. Hydrogen
PdAg nanoparticle	0.169	0.1 M KOH + 1.0 M EG	Int. J. Hydrogen Energy 2015 , <i>40</i> ,
PdAg nanoparticle	0.169	0.1 M KOH + 1.0 M EG	Int. J. Hydrogen Energy 2015 , <i>40</i> , 2225-2230
PdAg nanoparticle PtPd@Pt	0.169	0.1 M KOH + 1.0 M EG 0.5 M	Int. J. Hydrogen Energy 2015 , <i>40</i> , 2225-2230 Electrochim. Acta

Electrolyte Cycling stability References Catalysts Pt₃Co₁ UNWs-L 1.0 M KOH + 75.3 % activity This work after 500 cycles 1.0 M EG This work Pt₃Co₁ UNWs-L 1.0 M KOH + 74.9 % activity 1.0 M Glycerol after 500 cycles Pd/C 60 % activity after Electrochim. Acta 2015, promoted 1.0 M KOH + 1.0 M EG 1000 cycles with CaSiO₃ 158, 18-23 Pd_7Ru_1 1.0 M KOH + 67.7 % activity Nanoscale 2015, 7, nanodendrites 1.0 M EG after 500 cycles 12445-12451 70 % activity after PdCu₂ 1.0 M KOH + 1 ACS Appl. Mater. 300 cycles M ethanol Interfaces **2016**, *8*, 34497 PdNi 1.0 M KOH + 1 60 % activity after J. Colloid Interface Sci. M ethanol 500 cycles **2017**, *493*, 190-197 PtRu $0.5 \text{ M H}_2\text{SO}_4 +$ 52 % activity after Electrochim. Acta 2014, Nanoparticles/XC 500 cycles 0.5 M glycerol 142, 223-227 PtPb_{0.27} NPs/C 0.1 M HClO_4+ 31.6 % activity Chem. Mater. 2016, 28, after 1000 cycles 0.2 M ethanol 4447-4452. Pt_{0.3}Ru_{0.6}Pd_{0.1} 1 M KOH + 1 48 % activity after New J. Chem. 2017, 41,

Table S2 A literature survey of the activity and stability of catalysts toward alcohol

 electrooxidation

	M methanol	500 cycles	3048-3054
PtAu/RGO/GC	1 M KOH + 1	69.8 % activity	J. Mater. Chem. A 2013,
	M methanol	after 1000 cycles	1, 7255-7261
THH PtNi NFs	0.5 M HClO ₄ +	30 % activity after	Nano Lett. 2016, 16,
	0.2 M ethanol	300 cycles	2762-2767

Table S3 GOR performances of Pt_3Co_1 UNWs-L and various electroatalysts from published works.

Catalysts	Peaks	currents	Electrolyte	References
	from CV curves			
	J _m	J _s		
	(A/mg)	(mA/cm ²)		
Pt ₃ Co ₁ UNWs-L	3.7	7.2	1.0 M KOH +	This work
			1.0 M Glycerol	
PtNi _{0.67} Pb _{0.26}	0.36	0.61	0.1 M HClO ₄ +	J. Mater. Chem. A
NWs/C			0.2 M Glycerol	2017 , 5 , 18977-18983
Pt Nanoparticles		~ 0.23	0.1 M H ₂ SO ₄ +	Electrochim. Acta 2013,
			0.255 M	98, 25-31.
			Glycerol	
Pt NOs		~ 0.35	0.1 M H ₂ SO ₄ +	Electrocatal. 2011, 2, 96-
			0.1 M Glycerol	105.
Pt/MWCNT		0.16	0.1 M HClO ₄ +	Electrochim. Acta 2012,
			1.0 M Glycerol	66, 180-187.
PtNi/C	0.204	0.27	0.5 M KOH +	Appl. Catal. A 2012,
			2.0 M Glycerol	429-430, 39-47
Pd-CNx/G	1.1		0.5 M KOH +	ACS Catal.
			0.5 M Glycerol	2015 , 5, 3174-3180

Pd ₅ Ru-PEDOT/C		4.3	1 M KOH + 0.5	Electrochim. Acta 2015,
			M Glycerol	180, 339-352
Pd ₅₀ Ni ₅₀ /C	0.190		0.1 M KOH +	Electrocatal. 2013 , 4,
			0.1 M Glycerol	167-178
Pd ₃ Sn/phen-C	0.175		0.1 M KOH +	Int. J. Hydrogen Energy
			0.5 M Glycerol	2016 , <i>41</i> , 1272-14280
Pd-NiO _x -P/C	0.364		0.1 M KOH +	Chem. Eng. J. 2017, 38,
			0.5 M Glycerol	419-427
PtAg nanotubes	0.208	6.0	0.5 M KOH +	Electrochem. Commun.
			0.5 M Glycerol	2014 ,46,36-39

Catalysts	1 M KOH + 1 M EG (Ω	1 M KOH + 1 M glycerol
	cm ²)	$(\Omega \ \mathrm{cm}^2)$
Pt ₃ Co ₁ UNWs-S	108	189
Pt ₃ Co ₁ UNWs-M	84	154
Pt ₃ Co ₁ UNWs-L	76	131

Table S4 The parameters of R_{ct} from equivalent circuits for different catalysts in different solutions