Supporting Information

Rapid Low Temperature Self-Healable Polymeric composite for Flexible Electronic Devices

Naveen Tiwari, [‡] Fanny Ho, [‡] Ankit, [‡] Nripan Mathews^{*, ‡,†}

[‡] School of Materials Science and Engineering, Nanyang Technological University, 637553, Singapore

[†] Energy Research Institute @ NTU (ERI@N), Nanyang Technological University, 637553, Singapore

*E-mail: Nripan@ntu.edu.sg; Tel: +65 6790 4595

Figure S1: a) and b) ¹H liquid-state NMR spectra of PU-DA/ 50 wt% EMITFS and ionic liquid (EMITFS). c) ¹H solid-state NMR spectra of PU-DA/ 50 wt% EMITFS film, PU-DA film and ionic liquid (EMITFS).

Figure S2: FTIR spectrum of PU-DA, 16.7 wt % EMITFS in PU-DA, 25 wt % EMITFS in PU-DA, 33.3 wt % EMITFS in PU-DA, 41.7 wt % EMITFS in PU-DA, 50 wt % EMITFS in PU-DA, 58.3 wt % EMITFS in PU-DA and EMITFS (IL).

Figure S3: The optical microscopy images of PU-DA and PU-DA/ 50 wt% EMITFS, suggests that EMITFS is be homogeneously mixed within the PU-DA polymer matrix.

Figure S4: TGA curves of PU-DA, 16.7 wt % EMITFS in PU-DA, 25 wt % EMITFS in PU-DA, 33.3 wt % EMITFS in PU-DA, 41.7 wt % EMITFS in PU-DA, 50 wt % EMITFS in PU-DA and 58.3 wt % EMITFS in PU-DA.

Figure S5: DSC curves of 16.7 wt % EMITFS in PU-DA, 25 wt % EMITFS in PU-DA, 33.3 wt % EMITFS in PU-DA, 41.7 wt % EMITFS in PU-DA and 58.3 wt % EMITFS in PU-DA

Composition of EMITFS (%)	Healing Temperature (°C)
0.00 (PU-DA)	120
16.7	90
25.0	80
33.3	70
41.7	70
50.0	60
58.3	60

Table S1: The healing temperatures of the different composition of EMITFS in PU-DA film. All the film was of same thickness ($20 \mu m$) and kept at the required healing temperature according to the composition of EMITFS for 10 mins.

Figure S6: Stress-strain curves of PU-DA, 16.7 wt % EMITFS in PU-DA, 25 wt % EMITFS in PU-DA, 33.3 wt % EMITFS in PU-DA, 41.7 wt % EMITFS in PU-DA, 50 wt % EMITFS in PU-DA and 58.3 wt % EMITFS in PU-DA.

Figure S7: Image of the fracture of the damaged sample (a) and the healed sample (b).

Figure S8: Transmittance spectrum of PU-DA, 16.7 wt % EMITFS in PU-DA, 25 wt % EMITFS in PU-DA, 33.3 wt % EMITFS in PU-DA, 41.7 wt % EMITFS in PU-DA, 50 wt % EMITFS in PU-DA and 58.3 wt % EMITFS in PU-DA. The change in transmittance of 58.3 wt % EMITFS in PU-DA was due to the non-uniformity of the film.

Figure S9: Dielectric constant of PU-DA/EMITFS film with various concentration of EMITFS added: PU-DA, 25 wt % EMITFS in PU-DA, 33.3 wt % EMITFS in PU-DA, 41.7 wt % EMITFS in PU-DA, 50 wt % EMITFS in PU-DA and 58.3 wt % EMITFS in PU-DA.

Figure S10: Spin coated sample of EMITFS in PU-DA. All the samples are coated over glass at 1000 rpm for 20 s. Comparison of Surface Uniformity between PU-DA + 50.0% EMITFS and PU-DA + 58.3% EMITFS.