Electronic supplementary information

Benzothiadiazole-ethynylthiophenezoic acid as an acceptor of

photosensitizer for efficient organic dye-sensitized solar cells

Yanfei Mu, ac Heng Wu, bc Guangxing Dong, a Zuochun Shen, *b Sining Lib and Min Zhang*a

 ^a Institute for New Energy Materials and Low-Carbon Technologies, Tianjin University of Technology, Tianjin, 300384, China. * E-mail: zm2016@email.tjtu.edu.cn.
^b National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin, 150080, China. * Email: szc@hit.edu.cn.

^c These authors contributed equally to this work.

Fig. S1 Optimized geometries of **C258** and **HW-4** in THF. Carbon (gray), nitrogen (blue), oxygen (red) and sulfur (yellow). The hydrogen atoms are not shown.

Fig. S2 Normalized electronic absorption spectra of C258, C268 and HW-4 dissolved in THF (10 μ M). The datum of C268 is derived from the ref. 24.

Fig. S3 Time-correlated photoluminescences (PL) of dye dissolved in THF solvent. Excitation wavelength: 482 nm; Detection wavelength: 750 nm.

Fig. S4 The ¹H NMR (400 MHz) of 2 in CDCl₃.

Fig. S5 The ¹³C NMR (100 MHz) of 2 in CDCl₃.

Fig. S6 The high-resolution mass spectrum of 2.

Fig. S7 ¹H NMR (400 MHz) of **HW-4** in THF-*d*₈.

Fig. S8 ¹C NMR (100 MHz) of **HW-4** in THF-*d*₈.

Fig.S9 The high-resolution mass spectrum of HW-4.

Dye Loading Measurement

A newly prepared dye solution (12 g) was divided into three equal shares, which were coded as solutions 1, 2, and 3. A 5- μ m-thick translucent titania film and a sheet of FTO glass of the same size were respectively immersed into solutions 1 and 2 for overnight. Then, the TiO₂ film was taken out from solution 1 and washed with acetonitrile carefully to remove the weakly absorbed dyes. The acetonitrile solution was combined with the mother dye solution to have a total weight of 5 g. Solution 2 with the bare FTO glass was treated with the same procedure as solution 1. In addition, 1 g of acetonitrile was added into solution 3. Finally, 3 g of THF was added to each bottle of combined solutions to make sure that the dyes were completely dissolved. Furthermore, UV–Vis spectroscopies of these three solutions were recorded. The

dye-loading amount (c_m) can be calculated via the following equation:

$$c_{\rm m} = \frac{\left(A_2 - A_1\right) \times c \times V}{A_3 \times S \times I},$$

where A_1 , A_2 , and A_3 are the absorbances of final solutions 1, 2, and 3 at the same wavelength; *c* and *v* are the concentration and volume of fresh solutions 1, 2, and 3; *s* and *i* are the area and thickness of a titania film.