Supporting Information

Formation of hollow MoO₃/SnS₂ heterostructured nanotubes for efficient light-driven hydrogen peroxide production

Yifan Zhang and Soo-Jin Park*

Department of Chemistry and Chemical Engineering, Inha University, 100 Inharo, Incheon 22212, South Korea

*Corresponding author. <u>Tel: +82-32-860-7234; Fax: +82-32-860-5604</u> E-mail address: <u>sjpark@inha.ac.kr (S.-J. Park)</u>

Fig. S1. EDX spectrum of (a) MoO₃ nanowires; (b) SnS₂ nanosheets;
(c) MoO₃/SnS₂ nanotubes; (d) element contents of as prepared samples.

Fig. S2. XRD patters of SnS₂ nanosheets before and after cycling.

Fig. S3. XPS patters of MoO₃/SnS₂ nanotubes before and after cycling.

Fig. S4. S 2p patters of MoO₃/SnS₂ nanotubes before and after cycling.

Table	S1 .	The	comparation	on of	photoca	talytic	H_2O_2	production	activity	among	some
reporte	ed pł	notoc	atalysts in	the li	teratures	5.					

Catalysts/Weight (mg)	Light source	Time/min	H ₂ O ₂ evolution rate (µmol h-1)	Ehancement factor vs. bulk	Ref.	
Perylene imides/C ₃ N ₄ /50	300 W Xe-lamp (λ>420 nm)	120	57.5	19.2	S 1	
CdS/graphene /50	300 W Xe-lamp (λ>420 nm)	720	4	6.1	S2	
Au _{0.2} /BiVO ₄ /50	2 KW Xe-lamp (λ>420 nm)	600	4.1	8.0	S3	
CNT/C ₃ N ₄ /100	300 W Xe-lamp (λ>400 nm)	30	54	10.8	S4	
Biphenyl Diimide/C ₃ N ₄ /50	Solar light simulator (λ>420 nm)	120	12.2	9.0	85	H_2O_2
Mellitic Triimide/C ₃ N ₄ /50	300 W Xe-lamp (λ>420 nm)	120	16.8	Not Given	S6	
RGO/TiO ₂ /20	300 W Xe arc lamp (λ>320 nm)	180	27.2	15.7	S7	
Polyoxometalate/ C ₃ N ₄ /100	300 W Xe arc lamp (λ>320 nm)	60	35.4	12.4	S8	
MoO ₃ /SnS ₂ nanotubes /50	Solar light simulator	100	69.2	11.2	This work	

evolution in this work was compared with others in the reported literatures. To develop a better contrast, various photocatalysts were chosen for the H_2O_2 production comparison. Detailed information was also shown in **Table S1**. Zang et al. reported a Perylene imides modified C_3N_4 for H_2O_2 evolution, and the highest H_2O_2 evolution rate was 57.5 µmol h⁻¹ [1]. The performance of CdS/graphene in H_2O_2 evolution was investigated by Lee et al., and the highest H_2O_2 evolution rate was 18.1 µmol h⁻¹, which was 6.1 times higher than that of bulk CdS [2]. The H_2O_2 evolution rates of them are all lower than that of MoO_3/SnS_2 nanotubes sample in this study. Other catalytic systems, such as $Au_{0.2}/BiVO_4$ [3], CNT/C_3N_4 [4], Biphenyl Diimide/ C_3N_4 [5], Mellitic Triimide/ C_3N_4 [6], RGO/TiO₂ [7], and Polyoxometalate/ C_3N_4 [8], are also compared, and their H_2O_2 evolution rates are also lower than that of MoO_3/SnS_2 nanotubes sample. MoO_3/SnS_2 nanotubes sample showed a 69.2 µmol h⁻¹ H_2O_2 evolution rate, which was 11.2 times higher than the bulk MoO_3 nanowires.

Table S2 Actual Sn content from ICP-OES analysis of the solution after four cyclesof MoO_3/SnS_2 nanotubes.

Cycle	Actual Sn contents (wt.%)
1 st	0
2^{nd}	0
3 rd	0
4 th	0

References

- L. Yang, G. Dong, D.L. Jacobs, Y. Wang, L. Zang, C. Wang, J. Catal., 2017, 352, 274–281.
- [2] S. Thakur, T. Kshetri, N.H. Kim, J.H. Lee, J. Catal., 2017, 345, 78-86.
- [3] H. Hirakawa, S. Shiota, Y. Shiraishi, H. Sakamoto, S. Ichikawa and T. Hirai, ACS Catal., 2016, 6, 4976.
- [4] S. Zhao, T. Guo, X. Li, T. Xu, B. Yang, X. Zhao, Appl. Catal. B: Environ., 2018, 224, 725–732.
- [5] Y. Kofuji, S. Ohkita, Y. Shiraishi, H. Sakamoto, S. Tanaka, S. Ichikawa, T. Hirai, ACS Catal., 2016, 6, 7021-7029.
- [6] Y. Kofuji, S. Ohkita, Y. Shiraishi, H. Sakamoto, S. Ichikawa, S. Tanaka, T. Hirai, ACS Sustainable Chemistry & Engineering., 2017, 5, 6478–6485.
- [7] G. Moon, W. Kim, A.D. Bokare, N. Sung, W. Choi, Energy Environ. Sci., 2014, 7, 4023–4028.
- [8] S. Zhao, X. Zhao, H. Zhang, J. Li, Y. Zhu, Nano Energy., 2017, 35, 405–414.