Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Janus MoSSe monolayer: superior and strain-sensitive gas sensing material

Cui Jin^{1, 2}, Xiao Tang², Xin Tan³, Sean C. Smith³, Ying Dai^{1*}, Liangzhi Kou^{2*}

¹School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China

²School of Chemistry, Physics and Mechanical Engineering Faculty, Queensland University of Technology, Gardens Point Campus, QLD 4001, Brisbane, Australia

³Department of Applied Mathematics, Research School of Physics and Engineering, Australian

National University, Canberra 2601, Australia

daiy60@sina.com

Liangzhi.kou@qut.edu.au

Fig. S1 The value of (a) adsorption distance d (Å), (b) adsorption energy E_a (eV), and (c) charge transfer ΔQ (e) of gas molecules CO, CO₂, NH₃, NO and NO₂ adsorption on Se-layer, S-layer, respectively with different vdW correction methods (Method 1: the

zero damping DFT-D3 method of Grimme, which we adopt in this paper; Method 2: the DFT-D2 method of Grimme; Method 3: the DFT-D3 method with Becke-Jonson damping). The positive (negative) value of charge transfer represents gaining (losing) charge of the adsorbed gas molecule from (to) the layer.

Fig. S2 Structural models and optimized structures of gas molecules CO, CO₂, NH₃, NO and NO₂ adsorption on the MoS₂ (a-e) and MoSe₂ (f-j). The atoms of monolayer and adsorbed molecules are denoted. The 4×4 super cell of MoS₂ (MoSe₂) monolayer is represented by the dashed lines. Purple, green and yellow balls are Mo, Se and S atoms respectively. Black, red, light grey and light pink represent C, O, N and H atoms respectively.

Fig. S3 The variation of electrostatic potential Φ (eV) of (a) Se surface, and (b) S surface of the gas molecule CO, CO₂, NH₃, NO and NO₂ adsorption on Se-layer (S-layer), in comparison to pure Janus MoSeS structure. The corresponding electrostatic potential values are denoted with the different colors.

Tab. S1 Calculated the electrostatic potential shifting values $\Delta \Phi$ (eV) of Se (S) surface of the gas molecule CO, CO₂, NH₃, NO and NO₂ adsorption on Se-layer (S-layer), in comparison to pure Janus MoSeS structure. The positive (negative) value of $\Delta \Phi$ represents up-shifting (down-shifting) of the gas molecule adsorbed surface.

$\Delta \Phi (eV)$	СО	CO ₂	NH ₃	NO	NO ₂
Se-layer	0.03	0.04	0.16	0.02	0.01
S-layer	0.08	0.09	-0.06	0.08	0.07

Fig. S4 Structural models and optimized structures of gas molecule O_2 adsorption on the (a) Se-layer, and (b) S-layer. The atoms of monolayer and adsorbed molecules are denoted. The 4×4 super cell of Janus MoSSe monolayer is represented by the dashed lines. Purple, green, yellow and red balls are Mo, Se, S and O atoms respectively.

Tab. S2 Calculated adsorption distance d (Å), adsorption energy E_a (eV), and charge transfer ΔQ (e) of gas molecule O₂ adsorption on Se-layer, S-layer, respectively. The positive value of charge transfer represents gaining charge of the adsorbed gas molecule from the layer.

Adsorption surface	d (Å)	$E_{a}(eV)$	$\Delta Q(\mathbf{e})$
Se-layer	3.13	-0.104	0.035
S-layer	3.09	-0.101	0.018

Fig. S5 Structural models and optimized structures of gas molecule NO₂ adsorption on the (a) Se-bi-layer, and (b) S-bi-layer. The atoms of monolayer and adsorbed molecules are denoted. The 3×3 super cell of Janus MoSSe monolayer is represented by the dashed lines. Purple, green, yellow, light grey and red balls are Mo, Se, S, N and O atoms respectively.

Tab. S3 Calculated adsorption distance d (Å), adsorption energy E_a (eV), and charge transfer ΔQ (e) of gas molecule NO₂ adsorption on Se-layer, Se-bi-layer, S-layer, and S-bi-layer, respectively. The positive value of charge transfer represents gaining charge of the adsorbed gas molecule from the layer.

Adsorption surface	d (Å)	$E_{\rm a}({\rm eV})$	$\Delta Q(e)$
Se-layer	2.84	-0.245	0.107
Se-bi-layer	2.84	-0.312	0.186
S-layer	2.78	-0.216	0.069
S-bi-layer	2.80	-0.222	0.072

Fig. S6 The variation of (a) adsorption distance d (Å), and (b) adsorption energy E_a (eV) of the gas molecule NH₃ adsorption on Se-layer and S-layer, respectively, as the function of applied biaxial tensile strain.

Fig. S7 The variation of (a) adsorption distance d (Å), and (b) adsorption energy E_a (eV) of the gas molecule CO₂ adsorption on Se-layer and S-layer, respectively, as the function of applied uniaxial tensile strain.