Supplementary information for

From rational design of a new bimetallic MOF family with tunable linkers to OER catalysts

Xuan Zhang,^a Jiangshui Luo,^{*a,h,i} Kai Wan,^a Dieter Plessers,^b Bert Sels,^b Jianxun Song,^c Liugang Chen,^{a,d} Ting Zhang,^e Pengyi Tang,^{e,f} Joan Ramon Morante,^f Jordi Arbiol^{*e,g} and Jan Fransaer^{*a}

^aDepartment of Materials Engineering, KU Leuven, Leuven 3001, Belgium. E-mail: jan.fransaer@mtm.kuleuven.be; jiangshui.luo@gmail.com

^bCentre for Surface Chemistry and Catalysis, KU Leuven, Leuven 3001, Belgium.

^cHenan Province Industrial Technology Research Institute of Resources and Materials, Zhengzhou University, 450001 Zhengzhou, China;

^dHenan Key Laboratory of High Temperature Functional Ceramics, Zhengzhou University, Kexue Avenue 100, Zhengzhou, 450001, China

^eCatalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain. E-mail: <u>arbiol@icrea.cat</u>_____

^fCatalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, Sant Adriàdel Besòs, 08930 Barcelona, Catalonia, Spain

^gICREA, Pg. Llu & Companys 23, 08010 Barcelona, Catalonia, Spain

^hCollaborative Innovation Center of Clean Energy, Longyan University, Longyan 364012, China

ⁱState Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China

Sı	upplement	ary Figures and Tables
	Figure S1:	XRD patterns of M-BTC-DMF (M = Ni or Co) bimetallic MOFs3
	Figure S2:	SEM and EPMA results of M-BTC-DMF (M = Ni or Co) bimetallic MOFs·······4
	Figure S3:	Plots of (F(R) hv) ^{1/2} vs. energy based on UV-Vis data5
	Figure S4:	Photographs showing the change of color of bimetallic MOF powders
	Figure S5:	TGA traces of different M-bidy-BTC bimetallic MOFs under $N_{\rm 2}$ atmosphere7
	Figure S6:	SEM and EDS results of Co@C·····8
	Figure S7:	SEM and EDS results of CoNi1@C9
	Figure S8:	SEM and EDS results of CoNi2@C10
	Figure S9:	SEM and EDS results of CoNi3@C11
	Figure S10	SEM and EDS results of Ni@C·····12
	Figure S11	Full scan survey XPS spectra of different bimetallic MOF derived catalysts13
	Figure S12	EELS chemical composition mapping of CoNi3@C ······14
	Figure S13	EELS chemical composition mapping of CoNi2@C ······15
	Figure S14	N ₂ Adsorption-desorption isotherms and pore size distributions of different
		bimetallic MOF derived catalysts 16

Figure S15	: Nyquist plot of different catalysts		
Figure S16	• OER polarization curves of CoNi1@C prepared under different pyrolysis		
	temperatures 18		
Figure S17	EELS chemical composition maps of CoNi1@C after stability test		
Figure S18	SEM images and the related WDS results of CoNi1@C after stability test20		
Figure S19	: ICP-OES analysis results of the Co and Ni prior to and in as-prepared MOFs······21		
Table S1:	The preparation details of Co _x Ni _{1-x} -BTC-DMF bimetallic MOFs22		
Table S2:	EIS fitted results of different catalysts23		
Table S3:	Elemental composition based on WDS for the catalyst of CoNi1@C after 48 h		
	durability test on different substrate24		
Table S4:	Comparison of the electrochemical performances of Co-Ni mixed oxide		
	catalysts25		
Table S5:	Elemental composition based on full scan survey XPS spectra analysis26		
References	listed in Supplementary Information27		

Figure S1. XRD patterns of simulated results for Ni-BTC-DMF (A), resultant Co-BTC-DMF (B), resultant Co_xNi_{1-x} -BTC-DMF-1 (C), resultant Co_xNi_{1-x} -BTC-DMF-2 (D), resultant Co_xNi_{1-x} -BTC-DMF-3 (E), and resultant Ni-BTC-DMF (F), respectively.

Figure S2. SEM images and the corresponding EMPA elemental mapping (or EDS results) for Ni-BTC-DMF (a), Co-BTC-DMF (b), Co_xNi_{1-x} -BTC-DMF-1 (c), and Co_xNi_{1-x} -BTC-DMF-3 (d), respectively.

Figure S3. Plots of $(F(R) hv)^{1/2} vs$. energy based on UV-Vis data for Co-MOF, CoNiBMMOF-1, CoNiBMMOF-2, CoNiBMMOF-3 and Ni-MOF, respectively.

Figure S4. Photographs showing the change of color of bimetallic MOF powders upon changing the molar ratio of the two metal nodes.

Figure S5. TGA traces and the decomposition temperatures of different M-bipy-BTC bimetallic MOFs under N_2 atmosphere. Heating rate: 5 °C min⁻¹.

Figure S6. SEM images of Co@C at different magnifications with the scale bar of: (a) $6 \mu m$ and (b) 300 nm, respectively. (c) The corresponding EDS results.

Figure S7. SEM images of CoNi1@C at different magnifications with the scale bar of: (a) 5 μ m and (b) 500 nm, respectively. (c) The corresponding EDS results.

Figure S8. SEM images of CoNi2@C at different magnifications with the scale bar of: (a) 15 μ m and (b) 300 nm, respectively. (c) The corresponding EDS results.

Figure S9. SEM images of CoNi3@C at different magnifications with the scale bar of: (a) 2 μ m and (b) 300 nm, respectively. (c) The corresponding EDS results.

Figure S10. SEM images of Ni@C at different magnifications with the scale bars of: (a) 3 μ m and (b) 300 nm, respectively. (c) The corresponding EDS results.

Figure S11. Full scan survey XPS spectra of different M-bipy-BTC bimetallic MOF derived catalysts

Figure S12. EELS chemical composition mapping of CoNi3@C obtained from the red squared area of the STEM micrograph, showing individual Ni $L_{2,3}$ -edges at 855 eV (red), Co $L_{2,3}$ -edges at 779 eV (green), O K-edge at 532 eV (blue) and C K-edge at 284 eV (yellow) as well as the composite (Ni-Co, O-C and Ni-Co-O-C) elemental mapping of this nanostructure.

Figure S13. EELS chemical composition mapping of CoNi2@C obtained from the red squared area of the STEM micrograph, showing individual Ni $L_{2,3}$ -edges at 855 eV (red), Co $L_{2,3}$ -edges at 779 eV (green), O K-edge at 532 eV (blue) and C K-edge at 284 eV (yellow) as well as the composite (Ni-Co, O-C and Ni-Co-O-C) elemental mapping of this nanostructure.

Figure S14. N_2 adsorption-desorption isotherms and pore size distributions (the inset) of (a) Co@C, (b) CoNi1@C, (c) CoNi2@C, (d) CoNi3@C and (e) Ni@C, respectively.

Figure S15. Nyquist plots of different catalysts (in the frequency range from 100 kHz to 0.1 Hz with an amplitude of 5 mV at $\eta = 380$ mV). Inset: Modified Randles' equivalent circuit.

Figure S16. OER polarization curves of CoNi1@C (prepared under different pyrolysis temperatures) covered Ni foam in 1 M KOH in a three-electrode system; insert shows the N₂ adsorption-desorption isotherms of CoNi1@C, which was obtained under the pyrolysis temperature of 600 C.

Figure S17. EELS chemical composition mapping of CoNi1@C after stability test obtained from the red squared area of the STEM micrograph. Individual Ni $L_{2,3}$ -edges at 855 eV (red), Co $L_{2,3}$ -edges at 779 eV (green), O K-edge at 532 eV (blue) and C K-edge at 284 eV (grey) as well as the composite (Ni-Co and O-C) elemental mapping of the this nanostructure.

Figure S18. (a) SEM images and the corresponding WDS results for the catalyst CoNi1@C after 48 h durability test. (b) Scan details of WDS for different metal elements.

Figure S19. ICP-OES analysis results of the Co and Ni in the prepared MOFs (dissolved in 0.5 M HCL) and the corresponding reaction solution, wherein the mole ratio of Co *vs*. Ni in reaction solution and MOF structures is marked for each data point

	C / at.%	O /at.%	Co / at.%	Ni / at.%	Co : Ni
Co@C	24.36	46.96	28.68	0	Pure Co
CoNi1@C	19.53	52.20	19.46	8.81	2.2:1
CoNi2@C	14.58	49.04	17.84	18.54	1:1
CoNi3@C	15.24	46.68	10.50	27.58	1:2.6
Ni@C	13.03	46.70	0	40.27	Pure Ni

Table S1. Elemental composition (atomic percentage) based on full scan survey XPS

 spectra analysis for different catalysts.

	$R_{ m s}/\Omega$	Error / %	$R_{ m ct}/\Omega$	Error / %
Co@C	2.5	1.0	10.1	2.2
CoNi1@C	2.6	0.4	3.4	0.8
CoNi2@C	3.5	5.3	16.8	2.9
CoNi3@C	3.7	1.6	21.1	2.0
Ni@C	1.6	5.2	27.5	1.8

Table S2. EIS fitted results of different catalysts (in the frequency range from 100 kHz to 0.1 Hz with an amplitude of 5 mV at η = 380 mV).

	Co / at.%	Ni / at.%
CoNi1@C on Ni foam	67.1	32.9
CoNi1@C on carbon paper	75.4	24.6

Table S3 Elemental composition based on WDS for the catalyst of CoNi1@C after 48h durability test on different substrates (atomic percentage based on metal).

Reference	Catalyst	Overpotential	Overpotential	Coating
		$@E_{OER@10 \text{ mA cm}}^{-2}$	$@E_{OER@100 \text{ mA cm}}^{-2}$	technique
This work	CoNi1@C	335 mV (GC)	355 mV(NF)	Dip coating
		276 mV (NF)		
Ref.21	PBA derived Co-Ni (GC)	380 mV		Dip coating
Ref.22	MOF-74 derived Co-Ni	~560 mV		Dip coating
	(GC)			
Ref.S1 ¹	Co ₉ S ₈ @NOSC	340 (GC)	420 (NF)	Dip coating
		330 (NF)		
Ref.S2 ²	Co ₃ O ₄ /N-doped graphene	310 (NF)	>370 (NF)	Dip coating
Ref.S3 ³	CoNi SUNOE	450 (GC)		Dip coating
Ref.S4 ⁴	Ni-Co-S/CF		363 (Copper foam)	Dip coating
Ref.S5 ⁵	Co ₃ O ₄ /N-doped graphene	310 (NF)	>370 (NF)	Dip coating
Ref.S6 ⁶	NiCo-HS@G	302 (NF)	373 (NF)	Spray coating
Ref.S7 ⁷	Ni-P/Ni		374 (NF)	Direct growth
Ref.S8 ⁸	Ni ₃ Se ₂		388 (Copper foam)	Direct growth
Ref.S9 ⁹	$Ni_{2.3\%}$ -CoS ₂ /C		370 (NF)	Direct growth
Ref.S10 ¹⁰	NiCo ₂ S ₄ NA/CC		340 (NF)	Direct growth
Ref.S1111	Ni/Ni ₃ N		470 (NF)	Direct growth
Ref.S1212	Ni_3S_2		580 (NF)	Direct growth
Ref.S1313	NiO-Ni/NF		323 (NF)	Direct growth
Ref.S14 ¹⁴	NiCo ₂ O ₄ /Ni ₂ P	250 (NF)	~350 (NF)	Direct growth
Ref.S15 ¹⁵	NiS/Ni		~370 (NF)	Direct growth
Ref.S16 ¹⁶	Co ₃ O ₄ @C-N NSA/NiF		~480 (NF)	Direct growth
Ref.S1717	$ZnCo_2O_4$		~390 (NF)	Direct growth
Ref.S1818	MnO ₂ /NiCo ₂ O ₄ /NF	340 (NF)	~430 (NF)	Direct growth
Ref.S19 ¹⁹	1D NiCo ₂ S ₄	260 (NF)	~375 (NF)	Direct growth
	NiCo ₂ O ₄	330 (NF)	~465 (NF)	
Ref.S20 ²⁰	NF@Ni/C-600	265 (NF)	467 (NF)	Direct growth
Ref.S21 ²¹	Fe ₂ Cu ₅ Ni	280 (NF)	570 (NF)	Direct growth
Ref.S22 ²²	P-Ni(OH) ₂ /NiMoO ₄	270 (NF)	380 (NF)	Direct growth
Ref.S23 ²³	NiCoO@Ag ₄₀ /NF-Ar		~350 (NF)	Direct growth
Ref.S24 ²⁴	Co ₃ O ₄ /NiCo ₂ O ₄ (MOF)	340 (NF)	~495 (NF)	Direct growth

Table S4. Comparison of the electrochemical performance of Co-Ni mixed oxide catalysts in 1 M KOH for OER reported in the literature. The working electrodes are denoted as GC and NF for glassy carbon and Ni foam, respectively.

Samples	Molar ratio in reaction	Linker	Solvent
	solution (Co : Ni)	(gram per 100 mL)	
Co-BTC-DMF	Pure Co salt	1.05 g	80 mL DMF
Co _x Ni _{1-x} -BTC-DMF-1	2:1	1.05 g	80 mL DMF
Co _x Ni _{1-x} -BTC-DMF-2	1:1	1.05 g	80 mL DMF
Co _x Ni _{1-x} -BTC-DMF-3	1:2	1.05 g	80 mL DMF
Ni-BTC-DMF	Pure Ni salt	1.05 g	80 mL DMF

Table S5. The preparation details of $Co_x Ni_{1-x}$ -BTC-DMF bimetallic MOFs.

The total concentration of metal salts is 5 mmol.

References listed in Supplementary Information:

- S1. S. Huang, Y. Meng, S. He, A. Goswami, Q. Wu, J. Li, S. Tong, T. Asefa and M. Wu, N-, O-, and S-Tridoped Carbon-Encapsulated Co₉S₈ Nanomaterials: Efficient Bifunctional Electrocatalysts for Overall Water Splitting. *Advanced Functional Materials* 2017, 27 (17), 1606585.
- S2. M. Tahir, L. Pan, R. Zhang, Y.-C. Wang, G. Shen, I. Aslam, M. A. Qadeer, N. Mahmood, W. Xu, L. Wang, X. Zhang and J.-J. Zou, High-Valence-State NiO/Co₃O₄ Nanoparticles on Nitrogen-Doped Carbon for Oxygen Evolution at Low Overpotential. ACS Energy Letters 2017, 2 (9), 2177-2182.
- S3. B. Ni and X. Wang, Edge overgrowth of spiral bimetallic hydroxides ultrathin-nanosheets for water oxidation. *Chemical science* 2015, 6 (6), 3572-3576.
- S4. T. Liu, X. Sun, A. M. Asiri and Y. He, One-step electrodeposition of Ni–Co–S nanosheets film as a bifunctional electrocatalyst for efficient water splitting. *International Journal of Hydrogen Energy* 2016, *41* (18), 7264-7269.
- S5. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier and H. Dai, Co₃O₄ nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. *Nature materials* **2011**, *10* (10), 780-786.
- S6. T. Tang, W.-J. Jiang, S. Niu, N. Liu, H. Luo, Q. Zhang, W. Wen, Y.-Y. Chen, L.-B. Huang, F. Gao and J.-S. Hu, Kinetically Controlled Coprecipitation for General Fast Synthesis of Sandwiched Metal Hydroxide Nanosheets/Graphene Composites toward Efficient Water Splitting. Advanced Functional Materials 2018, 28 (3), 1704594.
- C. Tang, A. M. Asiri, Y. Luo and X. Sun, Electrodeposited Ni-P Alloy Nanoparticle Films for Efficiently Catalyzing Hydrogen- and Oxygen-Evolution Reactions. *ChemNanoMat* 2015, 1 (8), 558-561.
- S8. J. Shi, J. Hu, Y. Luo, X. Sun and A. M. Asiri, Ni₃Se₂ film as a non-precious metal bifunctional electrocatalyst for efficient water splitting. *Catalysis Science & Technology* **2015**, *5* (11), 4954-4958.
- S9. W. Fang, D. Liu, Q. Lu, X. Sun and A. M. Asiri, Nickel promoted cobalt disulfide nanowire array supported on carbon cloth: An efficient and stable bifunctional electrocatalyst for full water splitting. *Electrochemistry Communications* 2016, 63, 60-64.
- S10. D. Liu, Q. Lu, Y. Luo, X. Sun and A. M. Asiri, NiCo2S4 nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity. *Nanoscale* 2015, 7 (37), 15122-15126.
- S11. M. Shalom, D. Ressnig, X. Yang, G. Clavel, T. P. Fellinger and M. Antonietti, Nickel nitride as an efficient electrocatalyst for water splitting. *Journal of Materials Chemistry A* 2015, 3 (15), 8171-8177.
- S12. S. Qu, J. Huang, J. Yu, G. Chen, W. Hu, M. Yin, R. Zhang, S. Chu and C. Li, Ni₃S₂ Nanosheet Flowers Decorated with CdS Quantum Dots as a Highly Active Electrocatalysis Electrode for Synergistic Water Splitting. ACS applied materials & interfaces 2017, 9 (35), 29660-29668.
- S13. Z. Yue, W. Zhu, Y. Li, Z. Wei, N. Hu, Y. Suo and J. Wang, Surface Engineering of a Nickel Oxide-Nickel Hybrid Nanoarray as a Versatile Catalyst for Both Superior Water and Urea Oxidation. *Inorganic chemistry* 2018, 57 (8), 4693-4698.
- S14. L. Wang, C. Gu, X. Ge, J. Zhang, H. Zhu and J. Tu, Anchoring Ni₂P Sheets on NiCo₂O₄

Nanocone Arrays as Optimized Bifunctional Electrocatalyst for Water Splitting. *Advanced Materials Interfaces* **2017**, *4* (20), 1700481.

- S15. W. Zhu, X. Yue, W. Zhang, S. Yu, Y. Zhang, J. Wang and J. Wang, Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting. *Chemical communications* 2016, 52 (7), 1486-1489.
- S16. X. Kuang, Y. Luo, R. Kuang, Z. Wang, X. Sun, Y. Zhang and Q. Wei, Metal organic framework nanofibers derived Co₃O₄-doped carbon-nitrogen nanosheet arrays for high efficiency electrocatalytic oxygen evolution. *Carbon* 2018, *137*, 433-441.
- S17. G. M. Tomboc, F. O. Agyemang and H. Kim, Improved electrocatalytic oxygen evolution reaction properties using PVP modified direct growth Co-based metal oxides electrocatalysts on nickel foam. *Electrochimica Acta* 2018, 263, 362-372.
- S18. K.-L. Yan, X. Shang, W.-K. Gao, B. Dong, X. Li, J.-Q. Chi, Y.-R. Liu, Y.-M. Chai and C.-G. Liu, Ternary MnO₂/NiCo₂O₄/NF with hierarchical structure and synergistic interaction as efficient electrocatalysts for oxygen evolution reaction. *Journal of Alloys and Compounds* 2017, 719, 314-321.
- S19. A. Sivanantham, P. Ganesan and S. Shanmugam, Hierarchical NiCo₂S₄Nanowire Arrays Supported on Ni Foam: An Efficient and Durable Bifunctional Electrocatalyst for Oxygen and Hydrogen Evolution Reactions. *Advanced Functional Materials* **2016**, *26* (26), 4661-4672.
- S20. H. Sun, Y. Lian, C. Yang, L. Xiong, P. Qi, Q. Mu, X. Zhao, J. Guo, Z. Deng and Y. Peng, A hierarchical nickel–carbon structure templated by metal–organic frameworks for efficient overall water splitting. *Energy & Environmental Science* 2018, 11 (9), 2363-2371.
- S21. Y. Dong, F. Sun, X. Li, M. Chu, N. Li, X. Li, L. Wang, D. Qu, Y. Dong, Z. Xie, Y. Lin and C. Zhang, A Porous FeCuNi-Based Electrocatalyst Supported by Nickel Foam for Oxygen Evolution Reaction in Alkaline Conditions. *Journal of The Electrochemical Society* 2018, 165 (14), F1127-F1132.
- W. Xi, G. Yan, H. Tan, L. Xiao, S. Cheng, S. U. Khan, Y. Wang and Y. Li, Superaerophobic P-doped Ni(OH)₂/NiMoO₄ hierarchical nanosheet arrays grown on Ni foam for electrocatalytic overall water splitting. *Dalton transactions* 2018, 47 (26), 8787-8793.
- S23. K.-L. Yan, J.-Q. Chi, Z.-Z. Liu, B. Dong, S.-S. Lu, X. Shang, W.-K. Gao, Y.-M. Chai and C.-G. Liu, Coupling Ag-doping and rich oxygen vacancies in mesoporous NiCoO nanorods supported on nickel foam for highly efficient oxygen evolution. *Inorganic Chemistry Frontiers* 2017, 4 (11), 1783-1790.
- S24. H. Hu, B. Guan, B. Xia and X. W. Lou, Designed Formation of Co(3)O(4)/NiCo(2)O(4)
 Double-Shelled Nanocages with Enhanced Pseudocapacitive and Electrocatalytic Properties.
 Journal of the American Chemical Society 2015, *137* (16), 5590-5595.