Supporting Information

Dual-Source Evaporation of Silver Bismuth Iodide Films for Planar Junction Solar Cells

Maryam Khazaee,^{ab} Kasra Sardashti,^a Ching-Chang Chung,^c Jon-Paul Sun,^{ad} Hanhan Zhou,^c Eric Bergmann,^d Wiley A. Dunlap-Shohl,^a Qiwei Han,^{ae} Ian G. Hill,^d Jacob L. Jones,^c Doru C. Lupascu,^b and David B. Mitzi^{*ae}

^a Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States

^b Institute for Materials Science and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 15, 45141 Essen, Germany

^c Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States

^d Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5, Canada ^e Department of Chemistry, Duke University, Durham, North Carolina 27708, United States

E-mail: david.mitzi@duke.edu

Fig. S1. a) Experimental XRD pattern of annealed/quenched thin film of Ag-Bi-I without excess of Bil₃ (180 °C for 15 min), which was deposited with r = 0.6 and b) SEM image of the thin film with the same noted composition.

Fig. S2. Collected XRD pattern of annealed/slow-cooled thin film of Ag-Bi-I without excess of Bil₃ (180 °C for 15 min), which was deposited with r = 0.6.

Fig. S3. Monitoring N₂ stability of the annealed (without an excess of Bil₃) r = 0.6 Ag-Bi-I film using XRD, demonstrating the stability of the cubic phase over at least 6 months.

Table S1 Crystallographic parameters and corresponding compositions of as-deposited and post-deposition annealed films of Ag-Bi-I achieved by Pawley refinement and SEM/EDX, respectively.

Ag-Bi-I Film	Composition (SEM/EDX)	Crystal System/space group	Unit Cell Parameters (Å)	Volume (Å^3)	Impurity	Fitting Parameters
0.2: As- deposited	Ag _{0.49} Bi _{2.13} I7.00	Rhombohedral /R3m	a = b = 4.3502(3); c = 20.693(2)	339.14	Bil₃	Rp = 6.84 % wRp = 8.54 % GOF§ = 1.03
0.2: Annealed in N ₂	Ag0.72Bi2.07I7.00	Rhombohedral / <i>R</i> 3 <i>m</i>	a = b = 4.3479(4); c = 20.641(2)	337.92	Bil₃ —	Rp= 7.82 % wRp=9.81 % GOF= 1.28
		Cubic/ Fd3m	<i>a</i> = <i>b</i> = <i>c</i> = 12.1944(4)	1813.35		
0.6: As- deposited	AgBi _{2.00} I _{7.00}	Rhombohedral / <i>R</i> 3̄ <i>m</i>	a = b = 4.3546(1); c = 20.7430(3)	340.64		Rp = 6.84 % wRp = 8.94 % GOF = 1.35
0.6: Annealed under Bil ₃	Ag _{1.20} Bi _{1.85} I _{7.00}	Cubic/ <i>Fd</i> 3 <i>m</i>	a = b= c = 12.2043(3)	1817.75		Rp= 7.97 % wRp=10.31 % GOF= 1.1
0.6: Annealed in N ₂	Ag _{1.12} Bi _{1.04} I _{4.00}	Cubic/ <i>Fd</i> 3 <i>m</i>	a = b= c = 12.2079(2)	1819.39		Rp = 5.41 % wRp = 8.05 % GOF = 1.6
0.8: As- deposited	Ag _{1.62} Bi _{1.06} I _{5.00}	Rhombohedral / <i>R</i> 3 <i>m</i>	a = b = 4.3479(1); c = 20.8789(2)	341.82	Agl	Rp = 4.25 % wRp = 5.43 % GOF= 1.1
0.8: Annealed under Bil ₃	Ag _{1.85} Bi _{1.03} I _{5.00}	Rhombohedral / <i>R</i> 3̄ <i>m</i>	a =b= 4.3481(1); c = 20.8308(8)	341.06		Rp = 4.77 % wRp = 6.43 % GOF = 1.32
1.2: As- deposited	Ag _{1.96} Bi _{0.95} I _{5.00}	Rhombohedral / <i>R</i> 3̄ <i>m</i>	a = b = 4.3470(2); c = 20.8617(9)	341.40	Agl	Rp = 5.32 % wRp = 6.95 % GOF = 1.45
1.2: Annealed under Bil ₃	Ag _{1.91} Bi _{0.97} I _{5.00}	Rhombohedral / <i>R</i> 3 <i>m</i>	a = b = 4.3510(2); c = 20.859(1)	341.98	Agl	Rp = 6.12 % wRp = 8.24 % GOF= 1.15

§ GoF: Goodness of Fit

Fig. S4. Experimental XRD patterns of as-deposited thin film of Ag-Bi-I (black) with r = 0.8 at 25 °C and the annealed film from the TD XRD process (red) after cooling to 25 °C. Diffraction peaks at 12.68°, 23.97°, 25.06°, and 25.55° are assigned to 003, 101, 012, and 006 of rhombohedral Ag-Bi-I.

Fig. S5. SEM images of the annealed films from the TD XRD process with the associated compositions obtained from SEM/EDX; a) annealed film of r = 0.6 in N₂ (25°-180 °C, 180 °C for 1 h and cooled to 25 °C), b) annealed film of r = 0.8 in N₂ (25°-180 °C, 180 °C for 1 h and cooled to 25 °C).

Fig. S6. Tauc plots showing indirect band gaps for AgBi₂I₇ (red), AgBiI₄ (black), and Ag₂BiI₅ (blue) films.

Fig. S7. XPS AI K α survey scans of the as-loaded films of annealed r = 0.6 (AgBi₂I₇) and r = 0.8 (Ag₂BiI₅) at 180 °C under BiI₃ vapor and r = 0.6 (AgBiI₄) at 180 °C under N₂.

Fig. S8. Core level XPS (Al:AgBi₂I₇, Ag₂Bil₅; Mg:AgBil₄) K α spectra of a) Ag 3d, b) Bi 4f, and c) I 3d peaks for these films. Two small shoulders at ~162 eV and 157 eV in the Bi 4f spectrum for the AgBil₄ film originate from metallic Bi (Bi⁰). The small features marked with "§" are the K α 3 satellites of the 3d3/2 peaks, owing to a different excitation source (Mg vs. Al) used for core level spectra of AgBil₄ (Δ E_{Mg K α 3-K α 1} = 8.5 eV, Δ E_{Al K α 3-K α 1} = 9.7 eV).

Table S2 Atomic ratios (%) derived from XPS for the annealed thin films of Ag-Bi-I (180 °C, 15 min) deposited with $r = 0.6$ and $r = 0.8$.								
$r = (Agl/Bil_3)$	Ag (± 2)	Bi (± 1)	l (± 3)	Composition				
0.6 ^a	9	17	74	AgBi _{1.9} I _{8.2}				
0.6 ^b	21	22	57	AgBil _{2.7}				
0.8 ^a	18	13	69	Ag _{2.0} Bi _{1.1} I _{5.3}				

^a annealed under Bil₃; ^b annealed under N₂

Fig. S9. Close-up Mg K α scans of Bi4f peaks for as-loaded, 5 s, and 10 s sputtered thin film of AgBiI₄. Two small shoulders at ~162 eV and 157 eV originate from metallic Bi (Bi⁰).

Fig. S10. Experimental XRD pattern of annealed/slow-cooled thin film of Ag-Bi-I without excess of Bil₃, which was deposited with r = 0.6 on TiO₂/FTO. The labeled peaks with "*" originate from FTO.