Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information (ESI)

Solutionally processed intrinsically conductive polymer films with high

thermoelectric properties and good air stability

Hongyan Yao, Zeng Fan, Pengcheng Li, Bichen Li, Xin Guan, Donghe Du, Jianyong Ouyang*

Department of Materials Science and Engineering, National University of Singapore, 117574,

Singapore

Corresponding Author

*E-mail: mseoj@nus.edu.sg

Scheme S1. a) Synthesis of PEDOT:OTf through the oxidative polymerization of EDOT by iron (III) trifluoromethanesulfonate ($Fe(OTf)_3$), b) the chemical structure of glucose, ascrobic acid and EDA.

gluconic acid + 2H⁺ + 2e⁻ \longrightarrow glucose + H₂O $E^{\Theta} = 0.05 V$ DHA+2H⁺ + 2e- \longrightarrow ASC+H₂O $E^{\Theta} = 0.06 V$ SDA+ H⁺ + e- \implies ASC $E^{\Theta} = 0.32 V$ DHA+ H⁺ + e- \implies SDA+H₂O $E^{\Theta} = -0.20 V$

Where ASC is ascorbic acid, DHA is dehydroascorbic acid and SDA is semidehydroadcorbic acid radical.

Fig. S1 Thermoelectric properties of the as-synthesized PEDOT:OTf films. Dependences of (a) the electrical conductivity, (b) Seebeck coefficient and (c) power factor of the as-synthesized PEDOT:OTf films on the concentration of NMP.

Fig. S3 (a) F_{1s} and (b) O_{1s} XPS spectra of as-synthesized, glucose-, ascorbic acid- and NaOH-treated PEDOT:OTf films.

Fig. S4 (a) S 2p, (b) F 1s, (c) O 1s and (d) Cl 2p XPS spectra of as-synthesized and 10^{-5} M NaOH-treated, and 10^{-5} M NaOH-treated-then-1.0 M NaCl-treated PEDOT:OTf films.

Fig. S5 Raman spectra of the as-synthesized and NaOH, glucose and ascorbic acid treated PEDOT:OTf films.

Fig. S6 (a) Temperature dependences of the resistances of PEDOT:OTf films treated with NaOH, glucose and ascorbic acid. (b) Analysis of resistance-temperature relationships with the 1D VRH model.

Fig. S7 AFM images of PEDOT:OTf films treated with glucose solutions of different concentration, (a) and (b) 0.5 M, (c) and (d) 1.0 M, (e) and (f) 2.0 M, and (g) and (h) 4.0 M. The dimension is $2\times 2 \ \mu m^2$ for each AFM image.

Fig. S8 AFM images of PEDOT:OTf films treated with ascrobic acid solutions of different concentration, (a) and (b) 0.1 M, (c) and (d) 0.25 M, (e) and (f) 0.5 M, and (g) and (h) 1.0 M. The dimension is $2\times 2 \ \mu m^2$ for each AFM image.

Fig. S9 AFM images of PEDOT:OTf films treated with NaOH solutions of different concentration, (a) and (b) 10^{-5} M, (c) and (d) 10^{-3} M, and (e) and (f) 10^{-1} M. The dimension is $2\times 2 \ \mu m^2$ for each AFM image

Fig. S10 Stability of as-synthesized and NaOH-treated PEDOT:OTf films. Variations of (a) the electrical conductivity, (b) Seebeck coefficient and (c) power factor over the time.

0	Redox	Doping	Seebeck	Electrical	Maximum	
Chemical	potentia	level	coefficient conductivi		power factor	
	I	(%) (μV I		(S cm ⁻¹)	(µW m⁻¹ K⁻²)	
	(V)					
1.0 M Glucose	0.05 ¹	16.1	39.7±0.4	2679±48	422±11	
4.0 M Glucose		13.0	40.3±0.2	2363±198	384±32	
0.10 M Ascorbic		12.1	40.9±2.8	2304±19	387±53	
acid	0.06 ²					
0.25 M Ascorbic		11.8	41.3±1.0	2287±80	390±24	
acid						
10 ⁻⁵ M NaOH	-	12.8	49.2±1.4	2342±98	568±64	

Table S1. Electrical conductivity, Seebeck coefficient, and power factor of PEDOT:OTf films treated with glucose, ascorbic acid and NaOH solutions.

Table S2. Summary of the highest power factors for the PEDOT family in literature. The polymers are prepared by different methods.

Polymer	Method	Seebeck	Electrical	Maximum	Reference
		coefficient	conductivity	power factor	number
		(µV K⁻¹)	(S cm⁻¹)	(µW m⁻¹ K⁻²)	
	Secondary dopants	38.4±7.1	1061±16	157.35	3
PEDOT:PSS	(5 vol% DMSO, 0.3 vol% PEO)				
	Chemical dedoping	67	578	112	4
	(DMSO, (0.0175 wt%) Hydrazine)				
	Acid and NaOH treatment	39.2	2170	334	5
	(1M H_2SO_4 and 0.5 M NaOH aq)				
PEDOT:Tos -	NaOH treatment	~20	~650	26	6
	(NaOH aq)				
	Chemical dedoping	~220	~67	324	7
	(TDAE)				
	Electrochemical dedoping	~117	~923	1270	8
PEDOT:OTf	NaOH treatment	49.2±1.4	2342±98	568±64	This work
	(NaOH aq)				

References

- P. Shapley, 2011 Standard reduction half-cell potentials. Physical Constants and Tables. Retrieved May 6, 2018, from <u>http://butane.chem.uiuc.edu/</u> pshapley/genchem2/Tables.html#n.
- 2. H. Sapper, S. O. Kang, H. H. Paul and W. Lohmann, Z. Naturforsch C, 1982, **37**, 942-946.
- C. Yi, A. Wilhite, L. Zhang, R. Hu, S. S. Chuang, J. Zheng and X. Gong, ACS Appl. Mater. Interfaces, 2015, 7, 8984-8989.
- H. Park, S. H. Lee, F. S. Kim, H. H. Choi, I. W. Cheong and J. H. Kim, *J. Mater. Chem. A*, 2014,
 2, 6532-6539.

- 5. Z. Fan, P. Li, D. Du and J. Ouyang, *Adv. Energy Mater.*, 2017, **7**, 1602116.
- Z. U. Khan, O. Bubnova, M. J. Jafari, R. Brooke, X. Liu, R. Gabrielsson, T. Ederth, D. R. Evans,
 J. W. Andreasen, M. Fahlman and X. Crispin, *J. Mater. Chem. C*, 2015, 3, 10616-10623.
- O. Bubnova, Z. U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren and X. Crispin, *Nat. Mater.*, 2011, **10**, 429-433.
- 8. T. Park, C. Park, B. Kim, H. Shin and E. Kim, *Energ. Environ. Sci.*, 2013, **6**, 788-792.