Supplementary Information for

La-Doped BaSnO₃ Electron Transport Layer for Perovskite Solar Cells

Chang Woo Myung, Geunsik Lee, Kwang S. Kim*

Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.

Corresponding Author

*Correspondence and requests should be addressed to K.S.K. (email: kimks@unist.ac.kr).

Supplementary Note 1 We have employed the electrostatic potential of the solid to define the common vacuum level and to relate the calculation of the PBE+SOC+D3 to that of the PBE0+SOC+D3 that includes the Hartree-Fock exchange. The reference electrostatic local potential only includes the Hartree potential so that it is independent of the exchange-correlation functionals we choose.^{1,2} Then, we calculated the PBE0 correction on the PBE functional energy levels. The PBE0 correction is listed in Supporting Table 1.

Supplementary Table 1 The PBE0 correction (in eV) on the PBE energy level for the conduction band minimum (CBM) and the valence maximum (VBM).

	MAPbI ₃	BSO	LBSO(<i>x</i> =3.7 %)	LBSO(<i>x</i> =7.4 %)	LBSO(<i>x</i> =11.1 %)
CBM	0.33	0.75	0.20	0.06	-0.02
VBM	-0.61	-1.61	-1.59	-1.57	-1.55

Supplementary Fig. 1 The PBE0+SOC band structure of (a) cubic MAPbI₃ and (b) cubic BSO along the high symmetry points, $\Gamma(0.0, 0.0, 0.0)$, X(0.0, 0.5, 0.0), M(0.5, 0.5, 0.0), R(0.5, 0.5, 0.5). (c) The band gap variation of cubic BaSnO₃ with respect to the lattice constant *a*(BSO) at PBE0+SOC level (blue dot). The experimental lattice constant *a*(exp.) ~ 4.116 Å³ (red star) is also highlighted. Note that for thin-film LBSO, the lattice is partially relaxed with *a*(in-plain) = 4.09 Å and *a*(out-of-plane) = 4.12 Å.³

Pbl₂-SnO₂ x = 11.1 %

4

Supplementary Fig. 2 (a) Optimized geometry of the PbI₂-terminated MAPbI₃ and SnO₂-terminated BSO interface. Deformation of perovskite structure into plumbic-oxide-like structure. (b)-(d) This deformation is found regardless of the amount of La-doping, x = 3.7, 7.4, and 11 %.

Supplementary Fig. 3 (a) Strong HB (red dashed line) between H (white) of MA⁺ and O (red) of SnO₂ at MAI-SnO₂ interface of MAPbI₃/LBSO with La-doping x = 3.7 %. (b) The proton transfer of H (white) in MA⁺ to O (red) of BaO at the MAI-BaO interface of MAPbI₃/LBSO with La-doping x = 3.7 %. We note the protons of MA⁺ being transferred to O of BaO terminations.

MAI-SnO₂ x = 7.4 %

b

MAI-SnO₂ x = 11.1 %

MAI-BaO x = 7.4 %

MAI-BaO x = 11.1 %

d

С

Supplementary Fig. 4 All-perovskite heterostructure of the MAI-SnO₂ terminated MAPbI₃/L_xB_(1-x)SO for (a) x = 7.4 and (b) 11 %, the MAI-BaO terminated MAPbI₃/L_xB_(1-x)SO for (c) x = 7.4 and (d) 11 %, and the PbI₂-BaO terminated MAPbI₃/L_xB_(1-x)SO for (e) x = 7.4 and (f) 11 %.

Supplementary Fig. 5 PDOS for MAPbI₃/LBSO (La-doping of x = 3.7 %) interface of (a) MAI-SnO₂ with the interfacial I (purple) and Sn (blue), (b) MAI-BaO with the interfacial I (purple) and Ba, La (green), and (c) PbI₂-BaO with the interfacial Pb (red) and O (orange) with PBE+SOC+D3 are plotted. At the MAI-SnO₂ interface, we observe the hybridization of interfacial I and Sn states. At the MAI-BaO, the hybridization between I, Ba, and La occurs, lowering the Ba and La levels by ~ 2 eV. At the PbI₂-BaO, we find the hybridization between Pb and O atoms which forms the ionic bonds.

Supplementary Fig. 6 PDOS of the La-*d* state and Sn-*s* state of the MAPbI₃/LBSO interface at the (a) MAI-SnO₂, (b) MAI-BaO and (c) PbI₂-BaO terminations. We find that the La-*d* states are 2-4 eV away from the conduction band without hybridization.

Supplementary Fig. 7. PDOS of the MAI-BaO-terminated MAPbI₃/La_xB_(1-x)SO with La-doping of (a) x = 0.0 %, (b) x = 3.7 %, (c) x = 7.4 %, and (d) x = 11.1 % interfaces with the PBE0+SOC+D3 corrections, where interfacial Pb *s*, *p* (red) and Sn *s*, *p* (blue) states. The Fermi level (*E* - *E_F*) is indicated as a gray dashed line.

Supplementary references

(1) C. V. De Walle, R. M. Martin, Phys. Rev. B, 1987, 35 (15), 8154.

⁽²⁾ J. C. Conesa, J. Phys. Chem. C, 2012, 116 (35), 18884–18890.

⁽³⁾ Z. Lebens-Higgins, D. O. Scanlon, H. Paik, S. Sallis, Y. Nie, M. Uchida, N. F. Quackenbush, M. J. Wahila, G. E. Sterbinsky, D. A. Arena, J. C. Woicik, D. G. Schlom and L. F. J. Piper, *Phys. Rev. Lett.*, 2016, 116, 1–5.