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1. Bader population charge analysis on atomic species 

 

 

Red: semi-conducting, Blue: metallic (based on GGA-PBE) 

 

2. Electronic band gap and band dispersion  

 

Table S2. Electronic band gap of monolayer MX2 (M = Zr, Hf; X= S, Se, Te) using 

GGA+PBE and HSE06 functional. 

 

 

Table S1. Effective charges on atomic species calculated via Bader population analysis  
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Fig S3 Electronic band dispersion of 1T-MX2 and their corresponding Janus MXY monolayers 

determined via GGA-PBE (dotted curves) and HSE06 calculations (solid curves). M= Zr, Hf and 

X=S/Se/Te.  

3.  Dynamical stability 

Even if the total energy of a structure is minimized, its stability cannot be assured. Therefore, 

frequencies of the vibrational modes of optimized single-layer MX2 or MXY in 1T or Janus 

structures have been calculated along the high-symmetry k-points in the BZ to provide a rigorous 

test for the stability. A structure is taken to be stable only when calculated frequencies of all phonon 

modes in the BZ are positive; otherwise, imaginary frequencies indicate instability. In such 

calculations, the long wavelength, out of plane acoustical (ZA) modes are vulnerable to instability. 

Thus, caution has to be taken in calculating forces with extreme accuracy. 



To confirm the dynamical stability, phonon dispersions of 1T-MX2 and their Janus MXY 

monolayers have been calculated by using the density functional perturbation theory (DFPT). The 

results are plotted in Fig. S4 for all Janus MXY and also for 1T-MX2 monolayers. No appreciable 

imaginary vibrational frequency is noticed in the first Brillouin zone, which clearly suggests that 

monolayers are dynamically stable. Except a small pocket near the Γ point, no trace of imaginary 

frequencies is observed in the Brillouin zone. This small pocket of instability is extremely sensitive 

to the details of the calculation and in some cases, it disappears altogether. This suggests that it 

merely indicates the difficulty in achieving numerical convergence for the flexural phonon branch, 

which appears to be a common issue in the first principle calculations for 2D materials [Phys. Rev. 

B 89, 205416 (2014)]. The existence of small regions of phonon instability in the flexural acoustic 

(ZA) modes around the Γ point has also been observed in graphene, silicone, molybdenum 

disulfide and gallium chalcogenides. The region of instability shows extreme sensitivity to 

simulation parameters such as supercell size and k-point sampling. Moreover, the absolute values 

of the imaginary frequencies are close to zero and vary by the amount by which the acoustic 

branches of the dispersion curve miss zero when Newton’s third law is not imposed on the matrix 

of the force constants. For these reasons, it is understood that these regions of instability are 

spurious. [Phys. Rev. B 89, 205416 (2014)] 

 



 

 



 

Figure S4. Phonon energy dispersion spectrum of 1T-MX2 and MXY Janus monolayers. 

 

4. Determination of piezoelectric strain coefficients, 𝒅𝒊𝒍  

The piezoelectric strain coefficients can be determined by equating each element of 6x6 matrix, 

using eq. 1, 2 and 3 in eq. 4 [The boxed equations can be found in main text of this article]. 

1. 𝑒15 = 𝑑15𝐶44 − 𝑑22𝐶14 

2. −𝑒22 = 𝑑15𝐶14 − 2𝑑22 (
𝐶11−𝐶12

2
) 

 

 
𝑑22 =

𝑒22

𝐶11 − 𝐶12

 



 

3. −𝑒22 = −𝑑22𝐶11 + 𝑑22𝐶12 + 𝑑15𝐶13 

 

 

 

4. 𝑒22 = −𝑑22𝐶12 + 𝑑22𝐶11 − 𝑑15𝐶14 

 

 

 

5. 𝑒15 = −𝑑22𝐶14 − 𝑑22𝐶14 + 𝑑15𝐶44 

6. 𝑒31 = 𝑑31𝐶11 + 𝑑31𝐶12 + 𝑑33𝐶13 

 

 

 

7. 𝑒31 = 𝑑31𝐶12 + 𝑑31𝐶11 + 𝑑33𝐶13 

 

 

 

8. 𝑒33 = 𝑑31𝐶13 + 𝑑31𝐶13 + 𝑑33𝐶33 

N.A.  The above relations have been calculated on the basis of finite 𝐶𝑖𝑗 values. 𝐶11 = 𝐶22 ≠ 0,  

𝐶12 =  𝐶21 ≠ 0, 𝐶66 =
𝐶11−𝐶12

2
≠ 0. Specifically, 𝐶14 = −𝐶24 = 𝐶56 = 𝐶65 ≈ 0; and hence, 

neglected. Also, 𝐶33 ≈ 0 and 𝐶44 = 0. 

 

 

 

 

 

 

𝑑22 =
𝑒22

𝐶11 − 𝐶12

 

𝑑22 =
𝑒22

𝐶11 − 𝐶12

 

𝑑31 =
𝑒31

𝐶11 + 𝐶12

 

𝑑31 =
𝑒31

𝐶11 + 𝐶12

 



5. Born effective charges 

Table S5. Born effective charge tensor on each ionic species in 2D monolayer nanosheets (2D-

NS) 

𝟐𝑫 − 𝑵𝑺 𝑴𝒙𝒙 𝑴𝒚𝒚 𝑴𝒛𝒛 𝑿𝒙𝒙 𝑿𝒚𝒚 𝑿𝒛𝒛 𝒀𝒙𝒙 𝒀𝒚𝒚 𝒀𝒛𝒛 

ZrSSe 8.10 8.10 0.55 -4.26 -4.26 -0.31 -4.18 -4.18 -0.22 

ZrSTe 6.13 6.13 0.35 -3.28 -3.28 -0.26 -2.78 -2.78 -0.06 

ZrSeTe 6.86 6.86 0.40 -3.53 -3.53 -0.24 -3.19 -3.19  -0.11 

          

HfSSe 7.64 7.64 0.57 -4.03 -4.03 -0.32 -3.97 -3.97 -0.23 

HfSTe 6.75 6.75 0.37 -3.48 -3.48 -0.27 -3.32 -3.32 -0.08 

HfSeTe 7.40 7.40 0.39 -3.80 -3.80 -0.25 -3.62 -3.63 -0.12 

 

6. Mobility calculations  

For a systematic investigation of the charge carrier mobility in semi-conducting monolayers along 

the two non-equivalent, in-plane, transverse directions, namely, zigzag (x) and armchair (y) 

directions, the primitive supercell having an inherent hexagonal symmetry has been purposefully 

converted into a supercell with a rectangular orthorhombic symmetry. For the calculation of the 

deformation potential, external mechanical strain of an infinitesimal magnitude (-0.5% to +0.5% 

uniaxial strain in step sizes of 0.2%) has been applied along the in-plane transverse directions, at 

a time.  

Two formulation: [1] Bardeen and Shockley [Physical Review, 1950, 80, 72–80] and [2] Lang et al. 

[Physical Review B, 2016, 94, 235306] have been used in the present work in the calculation of 

longitudinal acoustic phonon limited charge carrier mobility. 
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Table S6. Parameters along the zigzag (x) and armchair (y) directions used in the carrier mobility 

calculations on different 2D monolayer nanosheets (2D-NS) 

 

7. Effects of external strain  

In unstrained Janus monolayers, the elastic stiffness constants and piezoelectric constants are 

found to be isotropic. However, external mechanical strain is found to bring about anisotropy in 

them. This anisotropy in the elastic constants gives rise to a slight anisotropy in Young’s modulus 

and Poisson’s ratio, as follows: 

𝑌𝑧𝑧(𝑎𝑐) =  𝑌11(22) =
𝐶𝑧𝑧𝐶𝑎𝑐 − 𝐶12

2

𝐶𝑧𝑧(𝑎𝑐)
=

𝐶11𝐶22 − 𝐶12
2

𝐶11(22)
 

𝜈𝑧𝑧(𝑎𝑐) =  𝜈11(22) =
𝐶12

𝐶𝑧𝑧(𝑎𝑐)
=  

𝐶12

𝐶11(22)
 

where zz (ac) represent zig-zag (arm-chair) directions respectively 

 



Table S7. Elastic stiffness constants, 𝑪𝟏𝟏 (N/m), 𝑪𝟐𝟐 (N/m). 𝑪𝟏𝟐 (N/m), Young’s modulus, 𝒀𝟐𝑫 

(N/m) & Poisson ratio,𝜈𝟐𝑫 along zig-zag (zz) and arm-chair (ac) directions, piezoelectric stress 

coefficients, 𝒆𝟐𝟐 & 𝒆𝟑𝟏 (10-10 C/m), piezoelectric strain coefficients, 𝒅𝟐𝟐 & 𝒅𝟑𝟏 (pm/V), external 

pressure, 𝑷𝒆𝒙𝒕.(𝐺𝑃𝑎) and HSE06 band gap, 𝑬𝒈 (eV) in unstrained and strained HfSSe monolayer: 

I and D denote indirect and direct band gap 

 

 

 

Fig. S5 Variation in (a) in-plane 𝑒22 and (b) out-of-plane 𝑒31 piezoelectric coefficients with the 

application of external mechanical strain along the zig-zag direction 

 

 



 

Fig. S6 Variation in the out-of-plane 𝑒31 piezoelectric coefficients with the application of (a) 

uniaxial strain along the arm-chair direction and (b) biaxial strain 

 

 

 

Fig. S7 Variation in the in-plane 𝑒22 piezoelectric coefficient with external pressure which is 

induced by the application of (a) uniaxial strain along the zig-zag and (b) arm-chair direction, and 

(c) biaxial strain 



 

Fig. S8 Variation in the out-of-plane 𝑒31 piezoelectric coefficient with external pressure which is 

induced by the application of (a) uniaxial strain along zig-zag and (b) arm-chair direction, and (c) 

biaxial strain 

 




