Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supplementary Information

Understanding on the structural and electrochemical performance of orthorhombic sodium manganese oxides

Ji Ung Choi^a, Chong Seung Yoon^b, Qian Zhang^c, Payam Kaghazchi^c, Young Hwa Jung^d, Kug-

Seung Lee^d, Do-Cheon Ahn^d, Yang-Kook Sun^{e,*} and Seung-Taek Myung^{a,*}

^aDepartment of Nano Technology and Advanced Materials Engineering, Sejong University, Seoul 05006, South Korea

^bDepartment of Materials Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea

^cInstitut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany

^dBeamline Department, Pohang Accelerator Laboratory (PAL), Pohang 37673, South Korea ^eDepartment of Energy Engineering, Hanyang University, Seoul 04763, South Korea

^{*} Corresponding author

E-mail: smyung@sejong.ac.kr (S. Myung), yksun@hanyang.ac.kr (Y. Sun)

Figure SI-1. XRD patterns of the compounds obtained on increasing the calcination temperature.

Figure SI-2. Top views and occupancies of Na sites for o-Na_{0.68}MnO₂ (configurations i and ii) and o-[Na_{0.62}Ni_{0.02}][Mn_{0.96}Ni_{0.02}]O₂ (configurations iii, iv, and v).

Figure SI-3. Top views of (a) o-NaMnO₂, (b) o-[Na_{0.96}Ni_{0.02}][Mn_{0.96}Ni_{0.02}]O₂, (c) o-[Na_{0.90}Ni_{0.02}][Mn_{0.96}Ni_{0.02}]O₂, and (d) o-[Na_{0.85}Ni_{0.02}][Mn_{0.96}Ni_{0.02}]O₂.

Figure SI-4. Rietveld refinement patterns of synchrotron and power XRD patterns for *o*-Na_{0.67}[$M_{0.05}Mn_{0.95}$]O₂ materials (M = Mn, Ni, Co, Cu, Zn, Fe, and Al). An enlargement is also shown in the inset corresponding to the (002) _{P'2} and (004)_{P'2} reflection.

Figure SI-5. The voltage profiles and cycling performance of o-Na_{0.67}[M_{0.05}Mn_{0.95}]O₂ (M = Mn, Ni, Co, Cu, Zn, Fe and Al).

Figure SI-6. Magnified *in situ* synchrotron XRD patterns for (a) o-Na_{0.67}MnO₂ and (b) o-Na_{0.67}[Ni_{0.05}Mn_{0.95}]O₂ electrodes recorded during one cycle in Figure 3.

Figure SI-7. Evolution of the *a*, *b*, and *c* cell parameters and the lattice volume of P'2, P''2 and OP4 phases during one cycle calculated from *in situ* S-XRD for a) o-Na_{0.67}MnO₂ and b) o-Na_{0.67}[Ni_{0.05}Mn_{0.95}]O₂.

Figure SI-8. (a) The [210] zone diffraction pattern and high-resolution image of o-Na_{0.67}MnO₂ after 1st cycle and (b) [110] zone diffraction pattern and high-resolution image of o-Na_{0.67}[Ni_{0.05}Mn_{0.95}]O₂ after the 50th cycle.

Figure SI-9. Rietveld Refinement of the *ex situ* XRD patterns for (a,c) *o*-Na_{0.67}MnO₂ (b,d) *o*-Na_{0.67}[Ni_{0.05}Mn_{0.95}]O₂ electrodes after one and extensive cycling, respectively. An enlargement is also shown in the inset corresponding to the $(002)_{P'2}$ reflection.

Figure SI-10. Hard carbon (a) First discharge-charge curves of Na/hard carbon and Na/hard carbon (pre-sodiated) and (b) Cyclability of sodium cell for 50 cycles of Na/hard carbon (pre-sodiated).

Figure SI-11. Comparison of (a) the first charge-discharge capacities and (b) cycling performance for 10 cycles assisted by the sacrificing salt additive tested in $o-Na_{0.67}[Co_{0.05}Mn_{0.95}]O_2$ with a weight ratio of 95:5 (active material:NaNO₂ additive).

During electrochemical desodiation, the NaNO₂ was oxidatively decomposed by the following reaction: NaNO₂ \rightarrow NO₂ + Na⁺ + e⁻. As anticipated, the initial charge capacity was able to increase which was similar to the initial discharge capacity with 100% Coulombic efficiency (Figure SI-11a) with acceptable electrode performances (Figures SI-11b).

Figure SI-12. (a) Differential scanning calorimetry curves of desodiated o-Na_{0.05}[Ni_xMn_{1-x}]O₂ (x = 0 and 0.05) obtained after charging to 4.3 V and *in situ* high-temperature XRD patterns of electrochemically desodiated (b) o-Na_{0.05}MnO₂ and (c) o-Na_{0.05}[Ni_{0.05}Mn_{0.95}]O₂.

The heat evolution of the exothermic processes was measured for desodiated o-Na_{0.05}[Ni_xMn_{1-x}]O₂ (x = 0 and 0.05) (Figure SI-12a). As anticipated, both desodiated compounds exhibited main exothermic reactions in the temperature range of 260–300 °C. Because the exothermic reaction is mainly related to the evaporation of oxygen from the crystal structure, the oxygen evolution triggers the partial formation of spinel Mn₃O₄, which is obvious for both samples in this temperature range. In particular, Ni-doped o-Na_{0.05}[Ni_{0.05}Mn_{0.95}]O₂ induced a slight shift of the main exothermic reaction toward higher temperatures with reduced heat generation because of the lower amount of oxygen evolution, as confirmed by the TGA data (Figure SI-13). This suggests that Ni doping in the Mn-matrix is effective in delaying oxygen

evolution, although the P'2 and OP4 structures are dominant in the high-temperature XRD patterns (Figures SI-12b and c). Further heating caused the formation of MnO_2 above 420 °C for $o-Na_{0.05}MnO_2$ and 450 °C for the Ni-doped $o-Na_{0.05}[Ni_{0.05}Mn_{0.95}]O_2$. After cooling, the P'2 and OP4 structures were still evident as major phases in the XRD patterns, emphasizing the structural stability of these Mn-based materials. In summary, the effect of Ni doping into P'2 $o-Na_{0.67}[Ni_xMn_{1-x}]O_2$ affects not only its superior electrochemical performance but also improves its thermal stability in the highly desodiated state.

Figure SI-13. Thermogravimetric analysis curves of chemically desodiated o-Na_{0.05}[Ni_xMn_{1-x}]O₂ (x = 0 and 0.05, respectively) obtained after charging to 4.3 V.

Na _{0.67} MnO ₂		X	У	Z	g	<i>B</i> /Å
Na _f (1)	4c	0	-0.0668	0.25	0.214	3.154
Na _e (2)	4c	0	0.3189	0.25	0.456	1.383
Mn	4a	0	0	0	1.0	0.27
0	8f 0		0.6504	0.0975	1.0	0.73
\mathbf{R}_{wp}						12.6 %
$Na_{0.67}[Ni_{0.05}Mn_{0.95}]O_2$		X	У	Z	g	B/Å
Na _f (1)	4c	0	-0.0680	0.25	0.237	3.5
Ni	4c	0	-0.0680	0.25	0.011	3.5
Na _e (2)	4c	0	0.3	0.25	0.399	2.6
Ni	4c	0	0.3	0.25	0.014	2.6
Mn	4a	0	0	0	0.975	0.42
Ni	4a	0	0	0	0.025	0.42
0	8f	0	0.6666	0.0934	1.0	0.85
	\mathbf{R}_{wp}					13.7 %

Table SI-1. Rietveld refinement results of S-XRD data for $o-Na_{0.67}MnO_2$ and $o-Na_{0.67}[Ni_{0.05}Mn_{0.95}]O_2$ calcined at 1200 °C for 10 h in a dry air atmosphere and the resulting electric conductivity.

		Lattice par	rameters			
Na _{0.67} [M _{0.05} Mn _{0.95}]O ₂ Electrodes	<i>a</i> -axis/Å	<i>b</i> -axis/Å	c-axis/Å	<i>R</i> _{wp} /%	Degree of distortion / %	Electric conductivity /S cm ⁻¹
M = Mn	2.8314(0)	5.2715(3)	11.1968(6)	12.6	7.0	$6.8 imes 10^{-6}$
M = Ni	2.8434(1)	5.1551(1)	11.2664(8)	13.7	4.5	5.2×10^{-5}
M = Co	2.8387(2)	5.1830(6)	11.2750(5)	11.3	5.1	1.3×10^{-5}
M = Cu	2.8383(4)	5.1835(7)	11.2714(8)	12.3	5.2	1.1×10^{-6}
M = Zn	2.8445(4)	5.1832(8)	11.2714(1)	13.2	4.9	5.1×10^{-6}
$\mathbf{M} = \mathbf{F}\mathbf{e}$	2.8400(8)	5.1656(3)	11.2280(6)	12.7	4.7	$8.9 imes 10^{-6}$
M = Al	2.8338(9)	5.2340(3)	11.1763(2)	12.2	6.2	6.7×10^{-6}

Table SI-2. Summary of refined crystallographic parameters, degree of distortion and electric conductivity for *o*-Na_{0.67}[$M_{0.05}Mn_{0.95}$]O₂ materials (M = Mn, Ni, Co, Cu, Zn, Fe, and Al).

U-J [eV]	<i>a</i> [Å]	b [Å]	<i>c</i> [Å]
3.0	2.90	5.74	10.81
4.0	2.92	5.73	10.85

Table SI-3. Calculated lattice parameters of bulk o-NaMnO₂ using different U-J values for Mn.

Lattice parameters	<i>a</i> -	<i>a</i> -axis/Å		<i>b</i> -axis/Å		c-axis∕Å	
F	Exp	Theo	Exp	Theo	Exp	Theo	
Na _{0.67} MnO ₂	2.83	2.88	5.27	5.42	11.20	11.12	
$[Na_{0.62}Ni_{0.02}][Mn_{0.96}Ni_{0.02}]O_2$	2.84	2.94	5.16	5.22	11.27	11.17	
NaMnO ₂ *	2.86	2.90	5.31	5.73	11.06	10.81	
$[Na_{0.96}Ni_{0.02}][Mn_{0.96}Ni_{0.02}]O_2^*$	2.85	2.90	5.17	5.63	11.05	10.77	
Na _{0.92} MnO ₂	-	2.90	-	5.64	-	10.85	
[Na0.90Ni0.02][Mn0.96Ni0.02]O2	-	2.90	-	5.58	-	10.81	
$[Na_{0.85}Ni_{0.02}][Mn_{0.96}Ni_{0.02}]O_2$	-	2.90	-	5.51	-	10.83	

Table SI-4. Calculated lattice constants for bare and Ni-doped o-Na_xMnO₂ models. Ni dopants (5%) are located at both Na and Mn sites. Experimental values are also given for comparison.

*The values were obtained from electrochemical sodiation (after 1st discharge to 1.5 V). Details are shown in Table S5.

After one cycled	Lattice parameters					
Na _{0.67} [M _{0.05} Mn _{0.95}]O ₂	<i>a</i> -axis/Å	<i>b</i> -axis/Å	c-axis/Å			
$\mathbf{M} = \mathbf{M}\mathbf{n}$	2.8644(7)	5.3102(0)	11.0625(8)			
M = Ni	2.8579(1)	5.1738(5)	11.0580(9)			

Table SI-5. Lattice parameter from Rietveld refinement after one cycle.

After extensive cycled Na _{0.67} MnO ₂		x	у	Z.	g	D /Å
						B/A
Na _f (1)	4c	0	-0.0668	0.25	0.435	3.154
Na _e (2)	4c	0	0.31894	0.25	0.558	1.383
Mn	4a	0	0	0	1.0	0.27
0	8f	0	0.87731	0.09874	1.0	0.73
a				11 1010/0		

Table SI-6. Lattice parameter from Rietveld refinement after extensive cycles.

Space group: *Cmcm*, *a* = 2.8728(2) Å, *b* = 5.3156(1) Å, *c* = 11.1312(8) Å

*R*wp/% = 13.3%

After extensiv Na _{0.67} [Ni _{0.05} M	ve cycled [n _{0.95}]O ₂	x	у	Z	g	B/Å
Na _f (1)	4c	0	-0.0680	0.25	0.363	3.5
Ni	4c	0	-0.0680	0.25	0.011	3.5
$Na_e(2)$	4c	0	0.3	0.25	0.587	2.6
Ni	4c	0	0.3	0.25	0.014	2.6
Mn	4a	0	0	0	0.975	0.42
Ni	4a	0	0	0	0.025	0.42
О	8f	0	0.6666	0.09340	1.0	0.85

Space group: *Cmcm*, a = 2.8551(5) Å, b = 5.1630(4) Å, c = 11.2594(1) Å

*R*wp/% = 8.19%