Supplementary Information for

Functional Separator Coated by Sulfonated Metal Organic Framework/Nafion Hybrids for Li-S Batteries

Seon Hwa Kim,^{a,‡} Jeong Seok Yeon,^{a,‡} Raekyung Kim,^b Kyung Min Choi,^{b,*} Ho Seok

Park^{a,c,*}

^aSchool of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 440-746, Republic of Korea

^bDepartment of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea

^cSKKU Advanced Institute of Nanotechnology (SAINT), College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 440-746, Republic of Korea

‡These authors are equally contributed

* To whom correspondence should be addressed.

E-mail: phs0727@skku.edu, kmchoi@sm.ac.kr

Figure S1. Fabrication process of MOF/Nafion hybrid coated separator.

Figure S2. Characterization of rGO/sulfur composite cathode. (a) Thermogravimetric analysis and (b) STEM images and elemental distributions of C, O, and S.

Figure S3. XRD patterns of pristine, Nafion-coated separator, UiO-66-S-coated, and UiO-66-S/Nafion hybrid-coated separators.

Figure S4. GCD profiles of Li-S batteries with (a) pristine, (b) Nafion-coated, and (c) UiO-66-S-coated separators at 0.2C.

Figure S5. GCD profiles at different C rates with (a) pristine, (b) Nafion-coated, (c) UiO-66-S-coated, and (c) UiO-66-S/Nafion hybrid-coated separators.

Figure S6. Cycling performances and Coulombic efficiencies of Li-S cells with pristine-, Nafion-coated, UiO-66-S-coated, and UiO-66-S/Nafion hybrid-coated separators at 1C.

Figure S7. CV profiles of (a) pristine, (b) Nafion-coated, UiO-66-S-coated, and UiO-66-S/Nafion hybrid-coated separators at a scan rate of 0.1 mV s⁻¹ for 10 cycles.

Figure S8. Cross-sectional SEM images of UiO-66-S/Nafion hybrid-coated separator (a) before and (b) after cycling process.

Figure S9. Digital photographs of (a) pristine, (b) Nafion-coated, (c) UiO-66-S coated, and (d) UiO-66-S/Nafion hybrid-coated separators after cycling process.

Figure S10. XPS S2p scans of UiO-66-S/Nafion hybrid-coated separator (a) before and (b) after mixing with a long chain polysulfide of $0.1M \text{ Li}_2\text{S}_6$ in DOL/DME.

Table. S1 Comparisons of Li-S cell with UiO-66-S/Nafion hybrid-coated separator withprevious literatures using MOF-modified separators.

Paper	Material	Specific capacity at low rates (mAh/g)	Specific capacity at high rates (mAh/g)	Rate capability (%)	Cycle stability (%)	Initial coulom bic efficien cy (%)
* This work	UiO-66- S/Nafion	1185 mAh/g (0.1C) 1061 mAh/g (0.2C)	958 mAh/g (1C)	80.8% (compared to 0.1C) 90.3% (compared to 0.2C)	77.4% (200 cycle)	
			889 mAh/g (2C)	75.0% (compared to 0.1C) 83.8% (compared to 0.2C)		98.0%
			785 mAh/g (3C)	66.2% (compared to 0.1C) 74.0% (compared to 0.2C)		
Nature Energy, 2016, 1 , 16094; Ref 43	HKUST- 1@GO	1072 mAh/g (0.2C)	488 mAh/g (3C)	45.5% (compared to 0.2C)	72.1% (100 cycle)	~95%
ACS Energy Letters, 2017, 2 , 2362-2367; Ref 44	Y-FTZB	~1480 mAh/g	~500 mAh/g	33.8%	50.6%	-
	ZIF-7	~1250 mAh/g	~300 mAh/g	24.0%	43.8%	_
	ZIF-8	~1180 mAh/a	~200 mAh/g	16.9%	39.3%	
		(0.1C)	(2.5C)	(compared to 0.1C)	(300 cycle)	-
	HKUST-1	~600 mAh/g (0.1C)	~100 mAh/g (2.5C)	16.7% (compared to 0.1C)	17.9% (300 cycle)	90%
<i>Electrochimica</i> <i>Acta</i> , 2018, 265 , 151-159; Ref 45	Mn-BTC MOF	~1450 mAh/g (0.1C)	~900 mAh/g (1C)	62.1% (compared to 0.1C)	74.0% (80 cycle)	94%
<i>Energy</i> <i>Storage</i> <i>Materials</i> , 2018, 14 , 383- 391; Ref 46	CNT@ZIF-30	1654.7 mAh/g (0.1C) 1081.7 mAh/g (0.2C)	583.2 mAh/g (2C)	35.2% (compared to 0.1C) 53.9% (compared to 0.2C)	54.8% (100 cycle)	~100%
ACS applied materials &	Polystyrene sulfonate@H KUST-1	~1400 mAh/g (0.2C)	835 mAh/g (1C)	59.6% (compared to 0.2C)	60.6% (500 cycle)	~99%
<i>interfaces</i> , 2018, 10 , 30451-30459; Ref 47			423 mAh/g (5C)	30.2% (compared to 0.2C)		
<i>Electrochimica</i> <i>Acta</i> , 2018, 283 , 1291- 1299; Ref 48	Ni- MOF@MWC NT	~1380 mAh/g (0.2C)	968 mAh/g (2C)	70.1% (compared to 0.2C)	87.1% (300 cycle)	~100%