Supporting Information for

Boosting Oxygen Reaction Activity by Coupled Sulfides for High-Performance Rechargeable Metal-Air Battery

Experimental Section

Chemicals. NiCl₂·6H₂O and FeCl₃·9H₂O were purchased from Sinopharm Chemical Reagent Co, Ltd. (SCRC). Graphite powder, sulfur powder, NaOH, Na₂CO₃, Pt/C-20 wt.% and Ir/C-20 wt.% were purchased from Beijing Chemical Reagents Company. 18 M Ω deionized water was used to prepare all aqueous solutions. All reagents were of analytical grade and were used without further purification.

Characterizations: The morphologies of the as-prepared samples were characterized by transmission electron microscope (TEM; FEI Tecnai G² 20), high-resolution TEM (HRTEM) (JEOL JEM-2100) and scanning electron microscope (SEM; Zeiss SUPRA 55). X-ray diffraction (XRD) patterns were collected on a Shimadzu XRD-6000 with Cu K α radiation (40 kV, 30 mA, λ = 1.5418Å), recorded with 20 in the range from 5° to 90°. X-ray photoelectron spectroscopy (XPS) measurements were carried out on a PHI Quantera II XPS Scanning Microprobe. N₂ adsorption-desorption isotherms were examined by a micromeritics ASAP 2460. Raman spectra were recorded on a Lab RAM ARAMIS Raman Spectrometer (HORIBA JobinYvon) and a 514 nm laser was applied as an excitation source. UV visible absorption spectrum (UV-vis) was recorded on a UV-vis 2450 Spectrometer, Shimadzu. Electron paramagnetic resonance (EPR) measurement was conducted on ELEXSYS-II, Bruker. The ICP emission spectrum was conducted on a Perkin Elmer Optima 7300DV ICP emission spectroscope.

Preparation of GO, NiFe-LDH/GO and NiFeS2/S-GO composite. GO was prepared from graphite powder according to a reported method.¹¹ NiFe-LDH/GO was prepared by a co-precipitation process described below. Firstly, 3 mmol of NiCl₂·6H₂O and 1 mmol of FeCl₃·9H₂O were dissolved in 40 ml of deionized water to form a homogeneous solution (solution A). Meanwhile, 6 mmol of NaOH and 2 mmol of Na₂CO₃ were dissolved in 40 ml of deionized water to form solution B. GO was dispersed in water with a concentration of 2 mg/ml, denoted as solution C. Subsequently, solution A and B were added dropwisely to solution C until pH of the final solution was adjusted to 8.5. After stirred for another 24 h, the dark-brown precipitants were formed and collected by centrifugation, and then washed three times by deionized water and ethanol. Finally, the cleaned samples were dried in an oven at 60 °C for 12 h.

To prepare NiFeS₂/S-GO, NiFe-LDH/GO precursor and 500 mg sulfur powder were put in a porcelain boat. Following, the sample was heated at 300 °C for 1 h in Ar at a heating rate of 5 °C/min.

Electrochemical measurements. The OER and ORR electrocatalytic performance were studied with a three-electrode system in 1.0 M aqueous KOH solution using a PINE electrochemical workstation. A saturated calomel electrode (SCE) and a platinum plate were used as the reference and the counter electrode, respectively. To prepare the working electrode, 5 mg of the as-prepared catalyst and 10 μ L of Nafion solution were dispersed in ethanol (1 mL) under ultrasonication for at least 1 h to form a homogeneous catalyst ink. Afterwards, 7 μ L of catalyst ink was loaded on a glassy carbon electrode (5 mm in diameter). The electrochemical performance was studied on a rotating disk electrode at a rotating speed of 1600 r/min. After twenty cyclic voltammetric (CV) scans, the polarization data were collected using linear sweep voltammetry (LSV) at a scan rate of 5 mV/s. The durability of the electrode was studied by chronoamperometry and CV method, respectively. For chronoamperometry method, a constant potential was applied to achieve an initial current density of 50 mA/cm² for each catalyst. For CV method, the catalyst was characterized by CV for 200 cycles at a scan rate at 1 mV/s.

Laviron equation. $\text{Ec} = \text{E}_{1/2} - (\text{RT}/\alpha nF) \times \ln (\alpha nF/\text{RTk}_s) - (\text{RT}/\alpha nF) \times \ln (v)$, where Ec is the reduction potential of metal redox, $\text{E}_{1/2}$ is the formal potential of metal redox, R is the universal gas constant, T is the temperature in Kelvin, n is the number of electrons transferred, α is the transfer coefficient, k_s is the rate constant of metal redox, and v is the scan rate in the CV measurement.

Figure S1 XRD pattern of NiFe-LDH.

Figure S2 Mott-Schottky plots of NiFe-LDH/GO and NiFeS₂/S-GO on glassy carbon electrode at a frequency of 1000 Hz.

Figure S3 SEM and HRTEM image of NiFe-LDH/GO.

Figure S4 EDS mapping of NiFeS₂/S-GO, showing uniform distribution of Ni, Fe, C, O and S.

Figure S5 Nitrogen adsorption/desorption isotherms for NiFeS₂/S-GO and physically mixed NiFeS₂ and S-GO.

Figure S6 A: Survey XPS spectrum. B & C: C 1s and S 2p spectrum of NiFeS₂/S-GO.

Figure S7 CV curves of (A) NiFe-LDH/GO and (B) NiFeS₂/S-GO collected at different scan rates. (The catalysts ink was prepared without adding active carbon, which may lead to the poor conductivity of catalysts)

Figure S8 Electron paramagnetic resonance spectra of NiFe-LDH/GO and NiFeS₂/S-GO.

Figure S9 Polarization curves (iR-corrected) of NiFe-LDH/GO, NiFeS₂/S-GO NiFeS₂+S-GO (mixture of NiFeS₂ and S-GO). Ir/C-20 wt.% and Pt/C-20 wt.% were set as references.

Figure S10 Determination of electrochemically active surface area for (A) NiFe-LDH/GO, (B) NiFeS₂+S-GO and (C) NiFeS₂/S-GO.

Figure S11 Polarization curves (ECSA&iR-corrected) of NiFe-LDH/GO, NiFeS₂/S-GO NiFeS₂+S-GO (mixture of NiFeS₂ and S-GO). Ir/C-20 wt.% and Pt/C-20 wt.% were set as references.

Figure S12 Electrochemical stability of NiFeS₂/S-GO by CV method.

Figure S13 (a) OER (b) ORR electrochemical stability of $NiFeS_2/S-GO$ by chronoamperometry method.

Figure S14 SEM image of NiFeS₂/S-GO after stability test, the scale bar is 200 nm.

Figure S15 Electronic structure of (A) Fe and (B) Ni in NiFeS₂/S-GO before and after stability test, NiCl₂ and FeCl₃ were set as references.

Figure S16 Voltage efficiency of a Zn-air battery adopting NiFeS₂/S-GO as the cathode at 10 mA/cm².

	-	-		
Catalyst	Eorr/V (-3 mA cm ⁻²)	EOER/V (10 mA cm-2)	ΔE/V (Eoer- Eorr)	Ref.
Co/N-C-800	0.74	1.599	0.859	22
MnOx	0.73	1.77	1.04	23
NiFe-LDH /Fe-N-C	0.728	1.512	0.786	24
NBSCF/N-rGO	0.869	1.635	0.766	25
NixCoyO4/Co–NG	0.796	1.629	0.833	26
NiCo ₂ O ₄	0.78	1.62	0.84	27
Co-N/C 800	0.78	1.74	0.96	28
LDO/CNTs	0.64	1.64	0.99	29
NiFe-LDH/GO	0.42	1.60	1.18	This work
NiFeS ₂ /S-GO	0.75	1.48	0.73	This work

Table S1 Comparison of bifunctional performance.

Table S2 Comparison of Zn-air batteries performances.

Sample	Working current density (mA/cm ²)	Working period (h)	Initial charging/discharging plateau (V)	Final charging/discharg plateau (V)	Ref.
(N, P)-doped	10	133	0.82	0.87	1
CoS2@TiO2					
rGO/CB2/	10	124	0.86	1.15	2
Co-Bi					
FeNx/C-700-	5	84	1.0	1.02	3
20					
NiFe@NBCNT	10	120	0.6	0.8	4
B,N-carbon	5	33	0.74	0.80	5
Fe0.33-	20	200	0.74	0.68	6
CoP/NF					
NiFeS ₂ /S-GO	10	60	0.78	0.81	This work
NiFeS ₂ /S-GO	50	30	1.12	1.17	This work

Reference

 Guo, L., Deng, J., Wang, G., Hao, Y., Bi, K., Wang, X., & Yang, Y. (2018). N, Pdoped CoS2 Embedded in TiO2 Nanoporous Films for Zn-Air Batteries. Advanced Functional Materials, 1804540.

- Sun, J., Yang, D., Lowe, S., Zhang, L., Wang, Y., Zhao, S., & Yao, X. (2018).
 Sandwich Like Reduced Graphene Oxide/Carbon Black/Amorphous Cobalt Borate Nanocomposites as Bifunctional Cathode Electrocatalyst in Rechargeable Zinc-Air Batteries. Advanced Energy Materials, 1801495.
- 3. Han, S., Hu, X., Wang, J., Fang, X., & Zhu, Y. (2018). Novel Route to Fe Based

Cathode as an Efficient Bifunctional Catalysts for Rechargeable Zn – Air Battery. Advanced Energy Materials, 1800955.

- Bin, D., Yang, B., Li, C., Liu, Y., Zhang, X., Wang, Y., & Xia, Y. (2018). In Situ Growth of NiFe Alloy Nanoparticles Embedded into N-Doped Bamboo-like Carbon Nanotubes as a Bifunctional Electrocatalyst for Zn–Air Batteries. ACS Applied Materials & Interfaces, 10(31), 26178-26187.
- Sun, T., Wang, J., Qiu, C., Ling, X., Tian, B., Chen, W., & Su, C. (2018). B, N Codoped and Defect - Rich Nanocarbon Material as a Metal - Free Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions. Advanced Science, 1800036.
- 6. Qin, X., Wang, Z., Han, J., Luo, Y., Xie, F., Cui, G., & Sun, X. (2018). Fe-doped CoP nanosheets array: an efficient bifunctional catalyst for zinc-air battery. Chemical Communications.