Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information

12.88% Efficiency in Doctor-Blade Coated Organic Solar Cells through Optimizing the Surface Morphology of a ZnO Cathode Buffer Layer

Guoqi Ji,^{a,d} Wenchao Zhao,^c Junfeng Wei,^a Linpeng Yan,^a Yunfei Han,^a Qun Luo,^{a,b,e*} Shangfeng Yang,^d Jianhui Hou,^{c*} Chang-Qi Ma^{a,b*}

^a Suzhou Institute of Nano-Tech and Nano-Bionics, Printable Electronics Research Center

(SINANO), Chinese Academy of Sciences, Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu 215123, P. R. China.

^b College of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230027. P. R. China.

^c Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China

^d Nano Science and Technology Institute, University of Science and Technology of China,

166 Ren Ai Road, SEID SIP, Suzhou, Jiangsu 215123, P. R. China

^e State Key Lab of Silicon Materials, Zhejiang University, Hangzhou, 310027, P. R.

China

Figure S1. Particle diameter of ZnO dispersed in acetone and methanol with concentration of 10 mg/mL that recorded by the dynamic light scattering measurement (DLS).

Figure S2. Performance distribution of the (a) PTB7-Th:PC₇₁BM and (b) PBDB-TF:IT-4F devices fabricated through spin-coating and doctor-blade coating.

Figure S3. AFM images of the doctor blade coated photoactive layers on the top of A-ZnO

and M-ZnO CBLs.

Figure S4. Absorption spectra of the doctor-blade coated PTB7-Th:PC71BM on the top of A-

ZnO and M-ZnO layers.

Table S1. Fitting parameters of the electrochemical impedance spectra of the spin-coated and

Device	$\mathbf{R}_{\mathbf{S}}$ (Ω cm ²)	\mathbf{R}_1 (Ω cm ²)	$\mathbf{R_2}$ (Ω cm ²)
A-ZnO SC	15.3	43.6	35.8
M-ZnO SC	13.6	43.1	32.1
A-ZnO DBC	16.8	43.4	130.1
M-ZnO DBC	14.3	43.2	92.5

docotor blade coated cells.

Entry	Process	ZnO	V _{OC}	$J_{ m SC}$	FF	РСЕ
			(V)	(mA/cm ²)	(%)	(%)
9	SC	A-ZnO	0.85	20.25	71	12.22
10	SC	M-ZnO	0.85	20.68	72	12.75
11	DBC	A-ZnO	0.86	20.06	68	11.73
12	DBC	M-ZnO	0.85	20.55	71	12.40

Table S2 Device performance of the A-ZnO SC, M-ZnO SC, A-ZnO DBC, M-ZnO DBCcells that used for LBIC mapping.

Figure S5. The device performance of the doctor-blade coated solar cells for the 0.12, 0.75

and 1.04 cm^2 .

Figure S6. Normalized (a) V_{OC} , (b) J_{SC} , (c) FF, and (d) PCE decay of the spin- and DB-coated PTB7-Th:PC₇₁BM inverted solar cells.