Electronic Supplementary Information (ESI)

Construction of dual-channel mode for wide-spectrumdriven photocatalytic H₂ production

Lulu Zhang,^a Hongwen Zhang,^a Bo Wang,^a Xueyan Huang,^a Fan Gao,^a Yan Zhao,^a Sunxian Weng *^b and Ping Liu*^a

^a Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, PR China.

^b State Grid Fujian Electric Power Research Institute, Fuzhou, 350002, P. R. China.

**Corresponding author. Tel.:* +86-591-22865876; *fax:* +86-591-2286-5876; *E-mail:* <u>liuping@fzu.edu.cn</u>.

Fig. S1. SEM patterns of the samples (a) $\rm H_{0.53}WO_3,$ (b) CdS and (c,d) $\rm H_{0.53}WO_3/CdS.$

Fig. S2.Wavelength dependence of activity of $H_{0.53}WO_3/CdS$.

Fig. S3. Time-circle photocatalytic H2 evolution rate on $H_{0.53}WO_3/CdS$.

Fig. S4. XRD pattern of $H_{0.53}WO_3/CdS$ before and after 15 hour cycling test.

Fig. S5. Cd 3d (a) and S 2p (b) XPS spectra of $H_{0.53}WO_3/CdS$ before and after 15 hour cycling test.

Fig. S6. (a)Mott-schottky plots of CdS and H_{0.53}WO₃/CdS. (b) photo-electrochemical impedance spectra of

CdS and H_{0.53}WO₃/CdS.

Fig. S7. UV-vis diffuse reflectance spectrum of CdS and $H_{0.53}WO_3$. Inset is Tauc's Plots of the $(\alpha hv)^2$ vs photon energy (hv) for CdS, plots of the $(\alpha hv)^{1/2}$ vs photon energy (hv) for $H_{0.53}WO_3$.

Fig. S8. XPS valence band spectra of CdS and $H_{0.53}WO_3.$

Fig. S9. TEM patterns of the sample $H_{0.53}WO_3/CdS$ -Au.

Fig. S10. Room-temperature ESR spectra of the as-prepared samples.

Table S1. Fermi level difference (ΔE_F) between CdS and $H_{0.53}WO_3$ measured by OCP technique in 0.5M Na₂SO₄ solution.

Samples	$E_{\rm F} ({\rm eV})$
$H_{0.53}WO_3$	-0.015
CdS	-0.605
$\Delta E_{\rm F}$	+0.59

Table S2. The specific surface area of $\rm H_{0.53}WO_3,\,CdS$ and $\rm H_{0.53}WO_3/CdS.$

Samples	$S_{BET}[m^2g^{-1}]$
H _{0.53} WO ₃	17.86
CdS	8.63
H _{0.53} WO ₃ /CdS	25.42