Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information

An advanced sandwich-type architecture of MnCo₂O₄@N-C@MnO₂ as an efficient electrode material for a high-energy density hybrid asymmetric solid-state supercapacitor

Khem Raj Shrestha,^a Syam Kandula,^a G. Rajeshkhanna,^a Manish Srivastava,^b Nam Hoon Kim,^{a*} and Joong Hee Lee^{a,c*}

^aAdvanced Materials Institute for BIN Convergence Technology (BK21 plus Global Program), Department of BIN Convergence Technology, Chonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.

^bDepartment of Physics and Astrophysics, University of Delhi-110007, India

^cCenter for Carbon Composite Materials, Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea

*E-mail: nhk@chonbuk.ac.kr; jhl@chonbuk.ac.kr; Tel: +82 63270 2342; Fax: +82 63270 2341

Figure S1. N₂ adsorption-desorption isotherm of (a) $MnCo_2O_4@N-C_{,}$ (b) $MnCo_2O_4$ and Pore size distribution (c) $MnCo_2O_4@N-C_{,}$ (d) $MnCo_2O_4$.

Figure S2. Low and high magnification FE-SEM images of (a and b) MnCo₂O₄ calcined under argon atmosphere (c) MnCo₂O₄ calcined under air atmosphere.

Figure S3. EDAX spectra of (a) MnCo₂O₄ nanowire (b) MnCo₂O₄@N–C core@shell.

Figure S4. (a and b) The Color mapping spectra (c) EDAX of $MnCo_2O_4@N-C@MnO_2$ nanowire.

Figure S5. (a and b) High magnification HR-TEM, (c) SAED pattern and (d) color mapping of MnCo₂O₄@N–C core@shell.

Figure S6. (a and b) High magnification HR-TEM, (c) SAED pattern and (d) color mapping of MnCo₂O₄.

Figure S7. The Raman spectrum of MnCo₂O₄@N–C@MnO₂ and MnCo₂O₄@N–C.

Figure S8. CV and GCD plot of (a, b) pure 1D MnCo₂O₄ and (c, d) MnCo₂O₄@N-C.

Figure S9. Bar chart showing the percentage of Faradic and pseudocapacitive contribution in at different scan rates of MnCo₂O₄@N–C@MnO₂.

Figure S10. (a) The schematic representation of ideal EIS plot (b) The EIS Nyquist plot of $MnCo_2O_4@N-C@MnO_2$ electrode before and after 10,000 cycles.

Figure S11. The digital photograph of the final fabricated asymmetric device setup.

Figure S12. (a) Photograph of the N–doped graphene hydrogel(NGH) (b) FE-SEM image of the NGH (c) Electrochemical performance of the NGH.

Figure S13. (a) $MnCo_2O_4@N-C@MnO_2$ and NGH measured the CV at scan rate 10 mV s^{-1} (b) EIS Nyquist plot $MnCo_2O_4@N-C@MnO_2//NGH$ device before and after 10,000 cycles.

Table S1. Comparison of electrochemical performance of MnCo₂O₄@N-C@MnO₂ electrode with recently reported core@shell

Electrode material	Areal capacitance/capacity [F cm ⁻² /mA h cm ⁻²]	Specific capacitance/capacity [F g ⁻¹ /mA h g ⁻¹]	Current density	Electrolyte	Stability (cycles)	Reference
CoO@MnO ₂	_	1,835 F g ⁻¹	1 A g ⁻¹	6 M KOH	97.7% (10,000)	[1]
Co ₃ O ₄ @MnO ₂	_	1,693 F g ⁻¹	1 A g ⁻¹	1 M LiOH	89.8% (10,000)	[2]
α-MnO ₂ NWs@δ-MnO ₂ core-shell	_	231 F g ⁻¹	1 A g ⁻¹	6 M KOH	98.1% (10,000)	[3]
Cobalt-doped MnO ₂ yolk-shell	_	350 F g^{-1}	0.1 A g ⁻¹	1 M Na ₂ SO ₄	90% (1,000)	[4]
TiO2@MnO2@C	_	$488 \ {\rm F} \ {\rm g}^{-1}$	1 A g^{-1}	1 M Na ₂ SO ₄	97.4% (10,000)	[5]
MnCo ₂ O ₄ @Ni(OH) ₂	_	2,154 F g $^{-1}$	5 Ag ⁻¹	2 M KOH	90% (2,500)	[6]
NiCo2O4@MnO2	$5.3 \mathrm{F}\mathrm{cm}^{-2}$	_	1 mA cm^{-2}	6 M KOH	90.1% (5,000)	[7]
MnNiCoO4@MnO2	_	1,931 F g ⁻¹	$0.8 \mathrm{~A~g^{-1}}$	6 M KOH	91.2% (6,000)	[8]
MnO ₂ /carbon	_	628 F g^{-1}	1 A g^{-1}	3 M KOH	98.5%	[9]

electrode material.

(2,000)

MnO2 nanoflake/CNT	_	370 F g^{-1}	0.5 A g^{-1}	1 M Na ₂ SO ₄	100% (4,000)	[10]
CC@ZnCo ₂ O ₄ @MnO 2	$3.6 \mathrm{F}\mathrm{cm}^{-2}$	_	2 mA cm^{-2}	2 М КОН	95.5% (5,000)	[11]
MnCo ₂ O ₄ @MnO ₂	_	858 F g ⁻¹	1 A g ⁻¹	3 М КОН	88% (5,000)	[12]
MnCo ₂ O ₄ Nanowire@MnO ₂	_	$2,262 \text{ F g}^{-1}$	1 Ag ⁻¹	6 M KOH	87.1% (5,000)	[13]
MnCo ₂ O ₄ @CoMoO ₄	-	2,115.4 F g ⁻¹	1.1 A g ⁻¹	1 M KOH	119% (5,000)	[14]
MnCo2O4@Ni3S2	-	2807 F g^{-1}	3 A g ⁻¹	6 M KOH	92% (5,000)	[15]
MnCo ₂ O ₄ @MnMoO ₄ CSNs	-	885 C g ⁻¹	3 A g^{-1}	6 M KOH	95% (5,000)	[16]
MNA-MnCo ₂ O _{4.5}	_	517.9 C g ⁻¹	3.6 A g ⁻¹	3 М КОН	98.3% (1,000)	[17]
Co ₃ O ₄ @MnCo ₂ O ₄	_	736.5 F g^{-1}	1 mA cm ⁻²	3 М КОН	76.9% (3,000)	[18]
porous MnCo ₂ O ₄ nanorod	_	845.6 F g^{-1}	1 A g ⁻¹	2 M KOH	90.2% (2,000)	[19]
CoO@MnO ₂	3.03 F cm ⁻²	1515 F g ⁻¹	2.0 mA cm ⁻²	6 M KOH	_	[20]

MnCo2O4@ N-C@MnO2	0.75 mA h cm ⁻² / 312 mA hg ⁻¹	2,955 F g ⁻¹	3 mA cm ⁻²	3 М КОН	89.6% 10,000	This work
MnO ₂ /C	_	497 F g ⁻¹	1 A g^{-1}	I M Na ₂ SO ₄	90% (5,000)	[26]
NiCo ₂ O ₄ MnO ₂ / graphene	5.15 F cm^{-2}	2,577 F g ⁻¹	1 A g ⁻¹ / 2 mA cm ⁻²	6 M KOH	94.3% (5,000)	[25]
NiCo ₂ O ₄ @MnO ₂	_	913.6 F g ⁻¹	0.5 A g^{-1}	1 M KOH	87.1% (3,000)	[24]
CoMoO4@C@MnO2	_	1,824 F g ⁻¹	3 A g ⁻¹	3 М КОН	82% (5,000)	[23]
CuO@C@MnO ₂	_	650 F g^{-1}	$0.4 \ Ag^{-1}$	1 M Na ₂ SO ₄	97.2% (2,000)	[22]
porous C/MnO ₂	-	392 F g^{-1}	$0.5 \ { m A g^{-1}}$	1 M Na ₂ SO ₄	-	[21]

Material Cathode//Anode	Working potential (V)	Energy density (Wh kg ⁻¹)	Power density (W kg ⁻¹)	Electrolyte	Stability (cycles)	References
ZnCo ₂ O ₄ @MnO ₂ //AC	1.6	29.4	628.4	PVA/KOH	95.3% (3,000)	[27]
MnCo ₂ O ₄ @CoMoO ₄ //AC	1.6	37.5	527.8	1 M KOH	_	[14]
MnCo ₂ O ₄ @CoS//AC	1.6	55.1	477.3	PVA/KOH	91 % (6,000)	[28]
MnO ₂ /C/MECN active carbon/Ni-foam	2.0	55.5	4000	1 M Na ₂ SO ₄	87.6% (5,000)	[26]
NiCo ₂ O ₄ MnO ₂ /GF //CNT/GF	1.5	55.1	187.5	-	89.4% (2,000)	[25]
CuO@MnO2/MEGO	1.8	22.1	85600	1 M Na ₂ SO ₄	101.5% (10,000)	[29]
FeCo2O4@MnO2//AC	1.6	22.6	406.01	3 M KOH	90.1% (5,000)	[30]
MnCo ₂ O ₄ @MnMoO ₄ //AC	1.6	49.4	815	6 M KOH	91% (5,000)	[31]
MnO ₂ @NiCo ₂ O ₄ //AC	1.6	26.6	800	_	_	[32]
MnO ₂ /C/Ag//AC	1.7	48.3	851.7	3 М КОН	98.5% (2,000)	[33]
MnCo ₂ O ₄ @Co ₃ O ₄ //AC	1.5	31	208.5	2 M KOH	101.2% (8,000)	[34]
rGO-MnCo ₂ O ₄ //AC	1.5	19	1551	3 M LiOH	-	[35]
NHCSs@MnO ₂ //AC	1.8	43.9	408	1 M Na ₂ SO ₄	81.4% (4,000)	[36]

Table S2. Comparison of MnCo₂O₄@N-C@MnO₂//NGH asymmetric capacitor.

MnCo2O4@NF//rGO	1.6	53.7	1600	2 M KOH	82% (5,000)	[37]
MnCo ₂ O ₄ @N-C@MnO ₂	1.6	68.2	749.2	PVA/KOH	91.1 % (10,000)	This work

References

- 1 C. Li, J. Balamurugan, T. D. Thanh, N. H. Kim and J. H. Lee, *J. Mater. Chem. A*, 2017, **5**, 397–408.
- D. Kong, J. Luo, Y. Wang, W. Ren, T. Yu, Y. Luo, Y. Yang and C. Cheng, *Adv. Funct. Mater.*, 2014, 24, 3815–3826.
- Z. Ma, G. Shao, Y. Fan, G. Wang, J. Song and D. Shen, *ACS Appl. Mater. Interfaces*, 2016, 8, 9050–9058.
- C. L. Tang, X. Wei, Y. M. Jiang, X. Y. Wu, L. N. Han, K. X. Wang and J. S. Chen, J.
 Phys. Chem. C, 2015, **119**, 8465–8471.
- 5 D. Shin, J. Shin, T. Yeo, H. Hwang, S. Park and W. Choi, *Small*, 2018, **14**, 1–13.
- 6 Y. Zhao, L. Hu, S. Zhao and L. Wu, Adv. Funct. Mater., 2016, 26, 4085–4093.
- L. Su, L. Gao, Q. Du, L. Hou, Z. Ma, X. Qin and G. Shao, J. Alloys Compd., 2018, 749, 900–908.
- 8 M. Tamaddoni Saray and H. Hosseini, *Electrochim. Acta*, 2016, 222, 505–517.
- 9 Y. Guan, Z. Guo, H. Che, J. Mu, X. Zhang, Z. Zhang, G. Wang, Y. Bai and H. Xie, *Chem. Eng. J.*, 2018, **331**, 23–30.
- 10 D. Gueon and J. H. Moon, ACS Sustain. Chem. Eng., 2017, 5, 2445–2453.
- 11 L. Lin, Q. Li, S. Nie, X. Peng and N. Hu, Ceram. *Int.*, 2016, **42**, 19343–19348.
- 12 X. Zheng, Y. Ye, Q. Yang, B. Geng and X. Zhang, *Dalt. Trans.*, 2016, 45, 572–578.

- 13 S. Liu, K. S. Hui and K. N. Hui, *ChemNanoMat*, 2015, 1, 593–602.
- Y. Feng, W. Liu, L. Sun, Y. Zhu, Y. Chen, M. Meng, J. Li, J. Yang, Y. Zhang and K. Liu,
 J. Alloys Compd., 2018, **753**, 761–770.
- Y. Lv, Z. Guo, A. Liu, H. Che, J. Mu, X. Zhang, Y. Bai, Z. Zhang and G. Wang, *Ceram. Int.*, 2017, 43, 12948–12956.
- 16 Y. Lv, A. Liu, H. Che, J. Mu, Z. Guo, X. Zhang, Y. Bai, Z. Zhang, G. Wang and Z. Pei, *Chem. Eng. J.*, 2018, **336**, 64–73.
- L. Kuang, F. Ji, X. Pan, D. Wang, X. Chen, D. Jiang, Y. Zhang and B. Ding, *Chem. Eng. J.*, 2017, **315**, 491–499.
- L. Zhao, M. Yang, Z. Zhang, Y. Ji, Y. Teng, Y. Feng and X. Liu, *Inorg. Chem. Commun.*, 2018, 89, 22–26.
- J. Xu, Y. Sun, M. Lu, L. Wang, J. Zhang, E. Tao, J. Qian and X. Liu, *Acta Mater.*, 2018, 152, 162–174.
- X. Wang, Y. Xiao, D. Su, L. Zhou, S. Wu, L. Han, S. Fang and S. Cao, *Electrochim. Acta*, 2016, **194**, 377–384.
- 21 T. Liu, C. Jiang, W. You and J. Yu, J. Mater. Chem. A, 2017, 5, 8635–8643.
- Y. Wang, S. Wang, Y. Wu, Z. Zheng, K. Hong, B. Li and Y. Sun, *Electrochim. Acta*, 2017, 246, 1065–1074.
- X. Cui, X. Chen, W. Zhang, X. Yan, M. Wang, J. Lian, Z. Zheng and H. Deng, J. Alloys Compd., 2017, 695, 2109–2116.

- Y. Zhang, B. Wang, F. Liu, J. Cheng, X. wen Zhang and L. Zhang, *Nano Energy*, 2016, 27, 627–637.
- 25 M. A. Garakani, S. Abouali, Z. L. Xu, J. Huang, J. Q. Huang and J. K. Kim, *J. Mater. Chem. A*, 2017, **5**, 3547–3557.
- D. Wu, S. Xu, M. Li, C. Zhang, Y. Zhu, Y. Xu, W. Zhang, R. Huang, R. Qi, L. Wang and
 P. K. Chu, J. Mater. Chem. A, 2015, 3, 16695–16707.
- D. Yu, Z. Zhang, Y. Meng, Y. Teng, Y. Wu, X. Zhang, Q. Sun, W. Tong, X. Zhao and X.
 Liu, Inorg. *Chem. Front.*, 2018, 5, 597–604.
- G. Liu, B. Wang, T. Liu, L. Wang, H. Luo, T. Gao, F. Wang, A. Liu and D. Wang, J.
 Mater. Chem. A, 2018, 6, 1822–1831.
- M. Huang, Y. Zhang, F. Li, Z. Wang, Alamusi, N. Hu, Z. Wen and Q. Liu, *Sci. Rep.*, 2014, 4, 35–40.
- 30 F. Zhu, Y. Liu, M. Yan and W. Shi, J. Colloid Interface Sci., 2018, 512, 419–427.
- 31 Y. Lv, A. Liu, H. Che, J. Mu, Z. Guo, X. Zhang, Y. Bai, Z. Zhang, G. Wang and Z. Pei, *Chem. Eng. J.*, 2018, **336**, 64–73.
- 32 Y. Zhou, L. Ma, M. Gan, M. Ye, X. Li, Y. Zhai, F. Yan and F. Cao, *Appl. Surf. Sci.*, 2018, 444, 1–9.
- 33 Y. Guan, Z. Guo, H. Che, J. Mu, X. Zhang, Z. Zhang, G. Wang, Y. Bai, and H. Xie, *Chem. Eng. J.*, 2018, **331**, 23–30.
- 34 J. J. Zhou, X. Han, K. Tao, Q. Li, Y. L. Li, C. Chen, and L. Han, *Chem. Eng. J.*, 2018,

354, 875–884.

- 35 S. G. Krishnan, M. Harilal, B. Pal, I. I. Misnon, C. Karuppiah, C. C. Yang, and R. Jose, *J. Electroanal. Chem.*, 2017, **805**, 126-132.
- L. Li, R. Li, S. Gai, S. Ding, F. He, M. Zhang, and P. Yang, *Chem. Eur. J.*, 2015, 21, 7119
 -7126.
- J. Xu, Y. Sun, M. Lu, L. Wang, J. Zhang, E. Tao, J. Qian, and X. Liu, *Acta Mater.*, 2018, 152, 162-174.