Supplementary Information

Kinetics for CO₂ Electrolysis on Composite Electrode Consisting of

Cu and Samaria Doped Ceria

Taolong Su,^a Yihang Li,^b Shuangshuang Xue,^b Zheqiang Xu,^b Minghao Zheng^b and Changrong Xia^{*b, c}

^a.Department of Materials Science, Zhongshan Institute, University of Electronic Science and Technology of China, No. 1 College Road, Shiqi District, Zhongshan, Guangdong Province, 528400, P. R. China

^bCAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui Province, 230026, P. R. China. *E-mail: xiacr@ustc.edu.cn

^cEnergy materials center, Anhui Estone Materials Technology Co. Ltd, No.12 Weigang Road, Bengbu, Anhui Province, 233400, P. R. China

Butler-Volmer Equation for CO₂ Electrolysis

The electrolytic reaction on the electrode is show as

composite cathodes

$$\operatorname{CO}_{2(p)} + \operatorname{V}_{0}^{*} + 2e' \leftrightarrow \operatorname{CO}_{(p)} + \operatorname{O}_{0}^{\times}$$
 (1)

Based on the report in the literature¹, elementary reaction processes are proposed for CO_2 electrolysis on Cu-SDC electrode as shown in Table 1.

Table 1 Elementary steps for the CO₂ electrolysis reaction at the three phase boundary (TPB) of Cu-SDC

composite canoucs.	
Step code	Elementary process
(1) CO ₂ adsorption	$CO_{2(g)} \leftrightarrow CO_{2(TPB)}$
(2) Charge transfer	$CO_{2(TPB)} + O_{O(TPB)} + e^{-} \leftrightarrow (CO_3)_{O(TPB)}$
(3) Charge transfer	$(CO_3)_{O(TPB)} + V_{O(TPB)} \stackrel{\bullet}{\to} e^- \leftrightarrow CO_{(TPB)} + 2O_{O(TPB)}^{\times}$
(4) Desorption	$CO_{(TPB)} \leftrightarrow CO_{(g)}$

The derivation of the Butler-Volmer (B-V) equation for the kinetics of reaction (1) comes from the literature reports for the multielectron reaction process². If the elementary step (2) is the rate limiting step, regardless of the mass-transfer effects, B-V equation derived from the elementary step is shown as

$$j = j_0 \left\{ \exp\left[-\frac{\alpha_1 F \eta}{RT}\right] - \exp\left[\frac{(2 - \alpha_1) F \eta}{RT}\right] \right\}$$
(2)

where α_1 is the charge transfer coefficient ($0 < \alpha_1 < 1$), j_0 the exchange current density, j the net current density, η the overpotential, T the temperature, R the gas constant (8.314 J mol⁻¹ K⁻¹) and F the Faraday constant (96485 A s mol⁻¹). If the elementary step (3) is the rate limiting process, B-V equation is

$$j = j_0 \left\{ \exp\left[-\frac{(1+\alpha_2)F\eta}{RT}\right] - \exp\left[\frac{(1-\alpha_2)F\eta}{RT}\right] \right\}$$
(3)

where α_2 is the charge transfer coefficient ($0 < \alpha_2 < 1$). Comparing eqn (2) and (3), it can be seen that the charge transfer coefficient of the forward current term of the B–V equation of the CO₂ electrolysis reaction is different due to different rate determining step, *i.e.* the former is less than 1, and the latter greater than 1.

Eqn (4) can be used to represent either Eqn (2) or Eqn (3), shown as

$$j=j_0 \left\{ \exp\left[-\frac{\alpha F\eta}{RT}\right] - \exp\left[\frac{(2-\alpha)F\eta}{RT}\right] \right\}$$
(4)

where α is the transfer coefficient ($0 < \alpha < 2$). The value of the charge transfer coefficient derived from experiment data can be used to determine which, step (2) or (3) in Table 1, is rate-determining step.

References

- 1. M. Zheng, S. Wang, M. Li and C. Xia, Journal of Power Sources, 2017, 345, 165-175.
- 2. A. J. Bard, L. R. Faulkner, J. Leddy and C. G. Zoski, *Electrochemical methods: fundamentals and applications*, wiley New York, 1980.