Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Support information

Potassium-intercalated Rubrene as Efficient Defects Passivation

Agent in High Efficiency Perovskite Solar Cells

Pingli Qin^{a,b,*}, Jiliang Zhang^c, Guang Yang^a, Xueli Yu^b, and Gang Li^{a,*}

 ^a The Department of Electronic and Information Engineering, the Hong Kong Polytechnic University, Hong Hum, Kowloon, Hong Kong SAR, China
^b, Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, Hubei 430205, P. R. China
^c Department of Energy and Materials Engineering, Dongguk University, Seoul 04620 South Korea

E-mail: gang.w.li@polyu.edu.hk; qpl2015@wit.edu.cn

Fig. S1. Crystal structure of rubrene.

Fig. S2. Cross-sectional SEM image of PSC.

Fig. S3. J-V curve of (a)the mixed ternary cation perovskite (CsI)_{0.04}(FAI)_{0.82}(PbI₂)_{0.86}(MAPbBr₃)_{0.14} and (b) MAPbI₃ devices with different K₂Rubrene concentrations dissolved in anti-solvent CB.

Fig. S4. J-V curve and parameter statistic of the champion device with K₂Rubrene treated.

Fig. S5. Absorption spectra of the mixed ternary cation perovskite films without and with rubrene and K₂Rubrene additives in anti-solvent CB.

Fig. S6. FTIR spectra of the mixed ternary cation perovskite films without and with rubrene and K₂Rubrene additives in anti-solvent CB.

Fig. S7. XRD spectra of the mixed ternary cation perovskite films without and with rubrene and K₂Rubrene additives in anti-solvent CB.