Electronic supplementary information

High-performance ternary organic solar cells with photoresponses beyond 1000 nm

Peiyao Xue,^a Yiqun Xiao,^b Tengfei Li,^a Shuixing Dai,^a Boyu Jia,^a Kuan Liu,^a Jiayu Wang,^a

Xinhui Lu,^b Ray P.S. Han,^{a,*} and Xiaowei Zhan^{a,*}

^aDepartment of Materials Science and Engineering, College of Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, P. R. China.

^bDepartment of Physics, The Chinese University of Hong Kong, New Territories 999077, Hong Kong, P. R. China

Materials

F8IC^{S1} and IDT-2BR^{S2} were synthesized according to reported procedures. PTB7-Th (M_w = 124 kDa, M_w/M_n = 1.7) was purchased from 1-Materials Inc.; chloroform (99.9%), diphenyl ether (DPE) (99.5%) and 2-methoxyethanol (99.8%) were purchased from J&K Chemical Inc.; zinc acetate dihydrate (99.9%), ethanolamine (99.5%) and MoO₃ were purchased from Sigma-Aldrich Inc.; and all the solvents and chemicals were used without further purification.

Characterization

The ultraviolet-visible (UV-vis) absorption spectra were measured on JASCO V-570 spectrophotometer in thin film (on a quartz substrate). Emission spectra were recorded on Hitachi F-4500 spectrophotometer (for samples with emission wavelength < 900 nm) or FLS980 fluorescence spectrophotometer (Edinburgh Instrument Co., Ltd., for samples with emission wavelength > 900 nm). Electrochemical measurements were carried out under argon in a deoxygenated solution of tetra-butylammonium hexafluorophosphate (0.1 M) in acetonitrile using a potential scan rate of 100 mV s⁻¹ with a computer-controlled CHI660C electrochemical workstation, a glassy-carbon working electrode coated with films, a platinum-wire auxiliary electrode and a Ag/AgCl electrode as a reference electrode. The potentials were referenced to a ferrocenium/ferrocene (FeCp₂^{+/0}) couple using ferrocene as an external standard. The HOMO and LUMO energies are estimated from the onset oxidation (*E*_{ox}) and reduction potentials (*E*_{red}) versus FeCp₂^{+/0} (0.45 V vs. Ag/AgCl), respectively, assuming the absolute energy level of FeCp₂^{+/0} to be 4.8 eV below vacuum.

HOMO = $-e (E_{ox} - 0.45) - 4.8$ (eV)

LUMO = $-e (E_{red} - 0.45) - 4.8 (eV)$

The morphology was observed using a Multimode 8 scanning probe microscopy (Bruker Daltonics) in the tapping mode and a JEM-2100 transmission electron microscope (TEM) operated at 200 keV. The grazing incidence wide-angle X-ray scattering (GIWAXS) and the grazing incidence small-angle X-ray scattering (GISAXS) measurements were carried out at BL23A1 of National Synchrotron Radiation Research Center, Hsinchu. The energy of the X-ray source was set to 10 keV (wavelength of 1.24 Å) and the incident angle was 0.15°. Both GIWAXS and GISAXS samples are prepared on silicon substrate by spin coating.

Device fabrication and characterization

All the devices are based on inverted sandwich structure, ITO glass/ZnO/active layer/MoO_x/Ag. First, the patterned indium tin oxide (ITO) glass (sheet resistance = $15 \Omega \, \Box^{-1}$) was precleaned in the ultrasonic bath with de-ionized water, acetone and isopropanol. Then, a ZnO layer (*ca.* 30 nm) was spin-coated at 4000 rpm onto the ITO glass from ZnO precursor solution (prepared by dissolving 0.1 g of zinc acetate dihydrate (Zn(CH₃COO)₂·2H₂O) and 0.03 mL of ethanolamine (NH₂CH₂CH₂OH) in 1.0 mL of 2-methoxyethanol (CH₃OCH₂CH₂OH)), followed by baking at 200 °C for 30 min. After that, the photoactive layer consisting of PTB7-Th/acceptors mixture solution (10.0 mg mL⁻¹) in chloroform was spin-coated at 1400 rpm onto the ZnO layer (*ca.* 80 nm) were then evaporated onto the active layer under the vacuum (*ca.* 10⁻⁵ Pa) to form the anode electrode. The measured area of the active device was 4 mm². The current density-voltage (*J-V*) curve was measured using a computer-controlled B2912A Precision Source/Measure Unit (Agilent Technologies). An XES-70S1 (SAN-EI Electric Co., Ltd) solar simulator (AAA grade, 70 × 70 mm² photobeam

size) coupled with AM 1.5G solar spectrum filters was used as the light source, and the optical power at the sample was 100 mW cm⁻². A 2×2 cm² monocrystalline silicon reference cell (SRC-1000-TC-QZ) was purchased from VLSI Standards Inc. The external quantum efficiency (EQE) spectrum was measured using a Solar Cell Spectral Response Measurement System QE-R3011 (Enlitech Co., Ltd.). The light intensity at each wavelength was calibrated using a standard single crystal Si photovoltaic cell.

SCLC measurement

Hole-only and electron-only devices were fabricated using the architectures ITO glass/PEDOT:PSS/active layer/Au for holes and ITO glass/ZnO/active layer/Ca/Al for electrons. For hole-only devices, the pre-cleaned ITO glass was treated by ultraviolet-ozone chamber (UVO) (Jelight Company, USA) for 15 min. Then PEDOT:PSS (*ca.* 35 nm) was spin-coated on it, and baked at 150 °C in the drying oven for 15 min. The photoactive layer was spin-coated at 1400 rpm on PEDOT:PSS layer, and Au (*ca.* 80 nm) was evaporated onto the photoactive layer under vacuum. For electron-only devices, ZnO (*ca.* 30 nm) was spin-coated onto the ITO glass, then the photoactive layer was spin-coated at 1400 rpm on Al (*ca.* 80 nm) were evaporated under vacuum. The mobility was extracted by fitting the current density-voltage curves using space charge limited current (SCLC). The equation is as follows

 $J = (9/8)\mu\varepsilon_{\rm r}\varepsilon_0 V^2 \exp(0.89(V/E_0L)^{0.5})/L^3$

where J refers to the current density, μ is hole or electron mobility, ε_r is relative dielectric constant, ε_0 is dielectric constant of free space, $V = V_{appl}^{-} V_{bi}$, E_0 is characteristic field, L is the thickness of the active layer. L was measured by Dektak XT (Bruker).

IDT-2BR	DIO	V _{OC}	$J_{ m SC}$	FF	PCE	calc $J_{\rm SC}$
(%)	(% v/v)	(V)	$(mA cm^{-2})$	(%)	(%)	(mA
	()		· · · ·			cm^{-2})
0	0.5	0.646	24.6	64.9	10.3	24.2
		(0.645 ± 0.006)	(24.5±0.4)	(63.5±1.8)	(10.1±0.3)	
10	0.5	0.662	25.5	68.7	11.6	24.2
		(0.660 ± 0.003)	(25.5±0.5)	(67.3±1.4)	(11.3±0.3)	
20	0	0.702	23.1	66.6	10.8	22.5
		(0.702 ± 0.003)	(22.2±0.8)	(66.6±1.3)	(10.4±0.4)	
20	0.5	0.687	25.1	69.9	12.1	24.2
		(0.683±0.006)	(25.3±0.7)	(68.6±1.1)	(11.9±0.3)	
20	1	0.682	24.4	71.4	11.8	23.2
		(0.680±0.011)	(22.8±1.8)	(70.7±2.8)	(10.9±0.8)	
30	0.5	0.700	23.6	66.1	11.0	22.9
		(0.701±0.003)	(23.5±0.5)	(64.4±2.0)	(10.6±0.4)	
50	0.5	0.730	20.8	49.7	7.58	20.8
		(0.731±0.002)	(20.8±0.3)	(47.3±2.3)	(7.20±0.41)	
100	0.5	1.05	12.9	54.3	7.31	13.2
		(1.05±0.006)	(13.0±0.4)	(53.0±1.9)	(7.21±0.09)	

Table S1 Performance of the OSCs with different IDT-2BR content in acceptors^a

^{*a*}Average values (in parenthesis) obtained from 15 devices.

 Table S2 Hole mobilities and electron mobilities of blend films.

active layer	$\mu_{\rm h} ({\rm cm}^2 {\rm V}^{-1} {\rm s}^{-1})$	$\mu_{\rm e} ({\rm cm}^2{\rm V}^{-1}{\rm s}^{-1})$	$\mu_{ m h}/\mu_{ m e}$
PTB7-Th/F8IC	$4.5 imes 10^{-4}$	$8.4 imes 10^{-5}$	5.4
PTB7-Th/IDT-2BR	1.3×10^{-5}	$1.0 imes 10^{-5}$	1.3
PTB7-Th/F8IC/IDT-2BR	1.1×10^{-3}	$6.4 imes 10^{-4}$	1.7

Fig. S1 Absorption spectra of PTB7-Th/IDT-2BR (blue), PTB7-Th/F8IC (red) and PTB7-Th/F8IC/IDT-2BR films (black).

Fig. S2 Cyclic voltammograms of IDT-2BR, F8IC and PTB7-Th films in CH₃CN/0.1 M $[^{n}Bu_{4}N]^{+}[PF_{6}]^{-}$ at 100 mV s⁻¹, the horizontal scale refers to an Ag/AgCl electrode.

Fig. S3 (a) Normalized photoluminescence spectrum of IDT-2BR thin film and UV-vis absorption spectra of F8IC and IDT-2BR thin films. (b) Photoluminescence spectra of pure F8IC film and F8IC/IDT-2BR blend film. (c) Photoluminescence spectra of PTB7-Th, PTB7-Th/F8IC, PTB7-Th/IDT-2BR and PTB7-Th/F8IC/IDT-2BR films.

Fig. S4 (a) J-V characteristics and (b) EQE spectra of the OSCs with different IDT-2BR content.

Fig. S5 (a) V_{OC} , (b) J_{SC} , (c) FF, and (d) PCE as a function of IDT-2BR weight ratio in acceptors.

Fig. S6 Stability curves of PTB7-Th/F8IC and PTB7-Th/F8IC/IDT-2BR devices under air conditions (a) and continuous heating at 80 °C in nitrogen atmosphere (b).

Fig. S7 *J-V* characteristics in the dark for hole-only (a) and electron-only (b) devices measured by SCLC method based on PTB7-Th/F8IC, PTB7-Th/IDT-2BR and PTB7-Th/F8IC/IDT-2BR blends.

Fig. S8 AFM height images $(2 \ \mu m \times 2 \ \mu m)$ of (a) PTB7-Th/F8IC; (b) PTB7-Th/IDT-2BR; (c) PTB7-Th/F8IC/IDT-2BR blend films; phase images $(2 \ \mu m \times 2 \ \mu m)$ of (d) PTB7-Th/F8IC; (e) PTB7-Th/IDT-2BR; (f) PTB7-Th/F8IC/IDT-2BR blend films.

Fig. S9 TEM images of (a) PTB7-Th/F8IC; (b) PTB7-Th/IDT-2BR; (c) PTB7-Th/F8IC/IDT-2BR blend films.

Fig. S10 (a) 2D GIWAXS patterns of the pure acceptors and (b) the corresponding intensity profile along the out-of-plane (solid lines) and in-plane (dashed lines) directions.

Fig. S11 (a) 2D GISAXS patterns of the blends. (b) 2D GISAXS patterns of the pure acceptors and (c) the corresponding intensity profile along the in-plane directions.

References

- S1. S. Dai, T. Li, W. Wang, Y. Xiao, T.-K. Lau, Z. Li, K. Liu, X. Lu and X. Zhan, Adv. Mater., 2018, 30, 1706571.
- S2. Y. Wu, H. Bai, Z. Wang, P. Cheng, S. Zhu, Y. Wang, W. Ma and X. Zhan, *Energy Environ. Sci.*, 2015, 8, 3215-3221.