# Supporting Information

## A 2D few-layer iron phosphosulfide: self-buffer heterophase structure induced by

## irreversible breakage of P-S bonds for high-performance lithium/sodium storage

*Chao-Ying Fan*, <sup>ab</sup> Xiao-Hua Zhang, <sup>a</sup> Yan-Hong Shi, <sup>a</sup> Hai-Yang Xu, <sup>b</sup> Jing-Ping Zhang, <sup>\*a</sup> Xing-Long Wu<sup>\*a</sup>

<sup>a</sup>Faculty of Chemistry, National & Local United Engineering Lab for Power Battery, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
<sup>b</sup>Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun, Jilin 130024, P. R. China
\*E-mail: xinglong@nenu.edu.cn; jpzhang@nenu.edu.cn

#### **Experimental Section**

*The preparation of e-FePS*<sub>3</sub>: First, the iron powder (Macklin, AR), sulfur powder (Aladdin, AR), and red phosphorus (Aladdin, AR) with stoichiometric ratio were *co*-heated in the vacuum sealed tube at 500 °C for 6 days to obtain b-FePS<sub>3</sub>. Next, the b-FePS<sub>3</sub> was exfoliated through the ultrasound in organic solvent for 3 h. In order to acquire optimum exfoliation effect, eight kinds of different solvents namely deionized water (H<sub>2</sub>O), n-hexane, *N*, *N*-dimethylformamide (DMF), acetone, *N*-methyl pyrrolidone (NMP), ethanol, acetylacetone, and isopropanol (IPA) were chosen. In addition, four different concentrations of b-FePS<sub>3</sub> in the solvent (0.5, 1, 2, and 4 mg mL<sup>-1</sup>) was prepared to explore the effect on exfoliation. After the ultrasound, the low-speed centrifugation at 3000 rpm was conducted for 15 min to remove the deposition which was not exfoliated. As a result, the uniform suspension of e-FePS<sub>3</sub> was obtained.

*The preparation of rGO-FePS<sub>3</sub> composite:* The graphene oxide (GO) suspension was first synthesized by modified Hummer's method.<sup>1</sup> And then, 25 mg GO (4.6 mg mL<sup>-1</sup>) was added into the e-FePS<sub>3</sub> suspension and mixed uniformly by stirring. Subsequently, 100  $\mu$ L hydrazine hydrate (N<sub>2</sub>H<sub>4</sub>·H<sub>2</sub>O) was added into the mixture to reduce GO for 24 h under the continuous stir. Next, the product was cleaned with deionized water several times and lyophilized at -50 °C for 12 h.

*Material characterizations:* The composition of the samples was explored through powder XRD using X-ray diffractometer with Cu K $\alpha$  radiation ( $\lambda$ =1.5418 Å) (D8 Bruker). The Raman spectrometer with an excitation laser beam wavelength of 633 nm (JY HR-800, HORIBA JOBIN YVON) was used to further analysis the structure of b-FePS<sub>3</sub> and rGO-FePS<sub>3</sub>. The information of chemical bonding of b-FePS<sub>3</sub> and rGO-FePS<sub>3</sub> was acquired through infrared

spectrometer (Nicolet 6700-FTIR, Thermo-Scientific). The composition and electronic state of rGO-FePS<sub>3</sub> was measured by XPS study (ESCALAB 250, Thermo). The AFM images were recorded in tapping mode with a Digital Instruments NanoScopeIII under ambient conditions. The SEM with energy dispersive spectrometer (Hitachi SU8000) and TEM (JEOL-2100F) were performed to probe the morphology and elemental mapping of b-FePS<sub>3</sub>, e-FePS<sub>3</sub> and rGO-FePS<sub>3</sub>.

Electrochemical measurement: Standard CR2032-type coin cells were assembled in Ar-filled glove box with oxygen and water value lower than 0.01 ppm. The work electrode was prepared by uniformly mixing 70% active materials (b-FePS<sub>3</sub> or rGO-FePS<sub>3</sub>), 20% acetylene black, and 10% polyvinylidene fluoride in the NMP solvent, and then, the slurry was evenly coated on Cu foil and dried at 60 °C for 24 h. For LIBs, the lithium foil served as the counter electrode and reference electrode. The electrolyte was composed of 1 M LiPF<sub>6</sub> dissolved into ethylene carbonate (EC) and dimethyl carbonate (DMC) (1:1 by volume). For SIBs, the sodium foil acted as counter electrode and reference electrode. 1 M NaClO<sub>4</sub> in EC and propylene carbonate (PC) (1:1 by volume) was the electrolyte with 5 wt% fluoroethylene carbonate (FEC) as additive. Galvanostatic tests of LIBs and SIBs were conducted through LAND CT2001A battery-testing instrument in the voltage range from 0.01-3.0 V vs. Li/Li<sup>+</sup> or Na/Na<sup>+</sup>. The CV measurement was carried out using the electrochemical station (CHI750E) at the scan rates of 0.01-2.0 mV  $s^{-1}$  within the voltage range from 0.01-3.0 V. The electrochemical kinetics of electrodes was investigated through the EIS test at different cycles using the CHI750E. The amplitude of the sine perturbation signal was 5 mV and the frequency was scanned from the highest  $(10^5 \text{ Hz})$  to lowest (0.01 Hz).



Fig. S1 The graphical illustration of the preparation of rGO-FePS<sub>3</sub> composite.

## **Table S1** The performance comparison of rGO-FePS<sub>3</sub> electrode with other binary metal

|                          | composites                                                        | Current density (A g <sup>-1</sup> ) | Cycle<br>number   | Reversible capacity<br>(mA h g <sup>-1</sup> ) | Publish<br>year |
|--------------------------|-------------------------------------------------------------------|--------------------------------------|-------------------|------------------------------------------------|-----------------|
| Metal<br>phosphosulfides | rGO-FePS₃                                                         | 0.1<br>1.0<br>8.0                    | 120<br>1000<br>55 | 842.7<br>569.8<br>269.8                        | This work       |
|                          | MoS <sub>2</sub> @ADC <sup>2</sup>                                | 0.1<br>1                             | 50<br>40          | 800<br>400                                     | 2016            |
|                          | RGO-NiCo <sub>2</sub> S <sub>4</sub> <sup>3</sup>                 | 0.5<br>1.6                           | 84<br>50          | 903<br>489.3                                   | 2018            |
|                          | ZnS-NPC <sup>4</sup>                                              | 0.1<br>4.0                           | 200<br>50         | 1067.4<br>364.6                                | 2017            |
|                          | Co-Zn-S@N-S-C-CNT⁵                                                | 0.1<br>1                             | 250<br>500        | 769<br>734                                     | 2016            |
|                          | MoS <sub>2</sub> /SnS <sub>2</sub> -GS <sup>6</sup>               | 0.75<br>3.8                          | 200<br>50         | 772<br>456                                     | 2017            |
| Metal sulfides           | Sn <sub>0.91</sub> Co <sub>0.19</sub> S <sub>2</sub> <sup>7</sup> | 0.1<br>10                            | 60<br>120         | 730<br>487.1                                   | 2017            |
|                          | 3D porous interconnected<br>SnS@C <sup>8</sup>                    | 1<br>10                              | 300<br>15         | 535<br>329                                     | 2015            |
|                          | NiS nanaoprisms/graphene9                                         | 0.07<br>5                            | 200<br>50         | 622<br>141                                     | 2016            |
|                          | SnSe <sub>0.5</sub> S <sub>0.5</sub> /C <sup>10</sup>             | 0.2<br>0.5<br>5                      | 150<br>1000<br>70 | 785<br>625<br>389                              | 2017            |
|                          | C@FeNi-S <sup>11</sup>                                            | 0.18<br>1.5<br>2.2                   | 200<br>1000<br>65 | 851.3<br>484.7<br>346.1                        | 2017            |
|                          | FexNi <sub>2x</sub> P-C <sup>12</sup>                             | 0.1<br>2.0                           | 400<br>50         | 775<br>360                                     | 2018            |
|                          | ZnGeP <sub>2</sub> /C <sup>13</sup>                               | 0.2<br>3.0                           | 100<br>50         | 807<br>665                                     | 2017            |
|                          | Hollow CoP NPs <sup>14</sup>                                      | 0.18<br>4.45                         | 100<br>50         | 630<br>256                                     | 2013            |
| metal                    | H-FeP@C@GR <sup>15</sup>                                          | 0.2<br>0.5<br>8.0                    | 100<br>300<br>60  | 771<br>542<br>482                              | 2017            |
| phosphides               | Ni <sub>12</sub> P <sub>5</sub> @C/GNS <sup>16</sup>              | 0.1<br>2.0                           | 100<br>200        | 900<br>237.3                                   | 2017            |
|                          | Ni₂P⊂pGN <sup>17</sup>                                            | 0.1<br>0.3<br>5.0                    | 250<br>500<br>70  | 511<br>457<br>246                              | 2017            |
|                          | Ni₂P NPs@GSs <sup>18</sup>                                        | 0.1<br>5.4                           | 200<br>280        | 625<br>410                                     | 2015            |
|                          | Ni2P/NiS <sub>0.66</sub> @C <sup>19</sup>                         | 0.1<br>0.4<br>4.0                    | 200<br>500<br>70  | 450<br>423.2<br>225                            | 2017            |

sulfides and phosphides reported in the literatures for lithium storage.

|  |                          | composite                                               | Current density (A g <sup>-1</sup> ) | Cycle<br>number   | Reversible capacity<br>(mA h g <sup>-1</sup> ) | Publish<br>year |
|--|--------------------------|---------------------------------------------------------|--------------------------------------|-------------------|------------------------------------------------|-----------------|
|  | Metal<br>phosphosulfides | rGO-FePS₃                                               | 0.05<br>5.0                          | 300<br>50         | 243.8<br>152.6                                 | This<br>work    |
|  | Metal sulfides           | ZnS/NPC <sup>4</sup>                                    | 0.1<br>1.0<br>4.0                    | 100<br>1000<br>45 | 370.6<br>289.2<br>182.4                        | 2017            |
|  |                          | CL-C/FeS <sup>20</sup>                                  | 1.0<br>5.0                           | 200<br>60         | 265<br>65                                      | 2017            |
|  |                          | ZnS-Sb <sub>2</sub> S <sub>3</sub> @C <sup>21</sup>     | 0.1<br>0.8                           | 120<br>40         | 630<br>390.6                                   | 2017            |
|  |                          | 3D porous interconnected<br>SnS@C <sup>8</sup>          | 1.0<br>10                            | 300<br>15         | 266<br>145                                     | 2015            |
|  |                          | RGO-NiCo <sub>2</sub> S4 <sup>3</sup>                   | 0.05<br>0.8                          | 70<br>50          | 530.2<br>221.7                                 | 2018            |
|  |                          | Ni <sub>3</sub> S <sub>2</sub> on Ni foam <sup>22</sup> | 0.05<br>0.8                          | 100<br>50         | 315.3<br>187.5                                 | 2016            |
|  |                          | VS <sub>2</sub> -SNSs <sup>23</sup>                     | 0.2<br>10                            | 100<br>30         | 245<br>180                                     | 2017            |
|  |                          | Bi <sub>2</sub> S <sub>3</sub> nanorods <sup>24</sup>   | 0.1<br>2.0                           | 40<br>35          | 322<br>264                                     | 2016            |
|  |                          |                                                         |                                      |                   |                                                |                 |
|  |                          | H-FeP@C@GR <sup>15</sup>                                | 0.1<br>1.6                           | 250<br>50         | 400<br>237                                     | 2017            |
|  | Metal<br>phosphides      | Cu <sub>4</sub> SnP <sub>10</sub> /MWCNTs <sup>25</sup> | 0.1<br>1.0                           | 100<br>100        | 512<br>325                                     | 2017            |
|  |                          | Ni₂P⊂pGN <sup>17</sup>                                  | 0.2<br>2.0                           | 100<br>90         | 161<br>101                                     | 2017            |
|  |                          | Co <sub>2</sub> P-3D PNC <sup>26</sup>                  | 0.05<br>3.0                          | 100<br>100        | 306<br>179                                     | 2017            |
|  |                          | RGO@CoP@C-FeP <sup>27</sup>                             | 0.1<br>2.0                           | 200<br>50         | 456.2<br>341.2                                 | 2017            |
|  |                          | Sn <sub>4</sub> P <sub>3</sub> NSs <sup>28</sup>        | 0.2<br>1.0                           | 250<br>25         | 303<br>300                                     | 2017            |
|  |                          | CoP@C-RGO-NF <sup>29</sup>                              | 0.1<br>1.6                           | 100<br>60         | 473.1<br>155                                   | 2017            |
|  |                          | MoP Nanorods <sup>30</sup>                              | 0.1                                  | 800<br>60         | 395.5<br>115.6                                 | 2017            |
|  |                          | Ni <sub>12</sub> P <sub>5</sub> @C/GNS <sup>16</sup>    | 0.1<br>2.0                           | 500<br>60         | 164.8<br>105.6                                 | 2017            |

**Table S2** The performance comparison of rGO-FePS $_3$  electrode with other binary metalsulfides and phosphides reported in the literatures for sodium storage.



Fig. S2 (a) Low- and (b) high-resolution SEM images of b-FePS<sub>3</sub>.



Fig. S3 N<sub>2</sub> adsorption-desorption isothermal curve of the b-FePS<sub>3</sub>.



**Fig. S4** XRD patterns of b-FePS<sub>3</sub> and e-FePS<sub>3</sub> with corresponding PDF pattern (PDF#30-0663).



Fig. S5 Side view for the crystal structure of  $FePS_3$ .



**Fig. S6** Exfoliation of the b-FePS<sub>3</sub> at various solvents. Typical optical images of b-FePS<sub>3</sub> after the ultrasound in (1) H<sub>2</sub>O, (2) n-hexane, (3) DMF, (4) acetone, (5) NMP, (6) ethanol, (7) acetylacetone, and (8) IPA solvents for 3 h with the concentration of 1 mg mL<sup>-1</sup>, and then rest for 12 h.



Fig. S7 (a) Low- and (b) high-resolution SEM images of e-FePS3 obtained by ultrasound of b-

FePS<sub>3</sub> in the IPA solvent with the concentration of 1 mg mL<sup>-1</sup>.



Fig. S8 SEM images of e-FePS $_3$  obtained by ultrasound of b-FePS $_3$  in the IPA solvent with

the concentration of (a, b) 2 mg mL<sup>-1</sup>, (c, d) 4 mg mL<sup>-1</sup>, and (e) 0.5 mg mL<sup>-1</sup>.



Fig. S9 Raman spectrum of rGO-FePS<sub>3</sub> in the range from 1000 to 2000 cm<sup>-1</sup>.



Fig. S10 High-resolution (a) C 1s and (b) N 1s XPS spectra of rGO-FePS<sub>3</sub>.



Fig. S11 (a)  $N_2$  adsorption-desorption isothermal and (b) pore-size distribution curves of the rGO-FePS<sub>3</sub>.



Fig. S12 Ex-situ TEM images of rGO-FePS $_3$  electrode in LIBs at selected charge-discharge

states during the first cycle.



Fig. S13 Ex-situ EIS results of rGO-FePS3 electrode in LIBs at selected charge-discharge

states during the first cycle.



Fig. S14 EIS results of the rGO-FePS<sub>3</sub> electrode in LIBs at different cycles.



Fig. S15 (a) CV curves at the scan rate of 0.1 mV s<sup>-1</sup> and (b) charge-discharge profiles at 0.1

A  $g^{-1}$  of b-FePS<sub>3</sub> electrode for LIBs at different cycles.



Fig. S16 SEM image of rGO-FePS<sub>3</sub> electrode after 200 cycles for LIBs.



Fig. S17 The CV curves of rGO-FePS<sub>3</sub> electrode at different scan rates for LIBs.



**Fig. S18** (a) b value vs. battery voltage of the rGO-FePS<sub>3</sub> electrode at cathodic and anodic scans for LIBs. The representative current response plotted against scan rates at different voltages in the (b) cathodic scan and (c) anodic scan. (d) The calculated  $k_1$  and  $k_2$  values at different voltages in the cathodic scan. The  $k_1$  and  $k_2$  is acquired via plotting the  $v^{1/2}$  vs.  $i/v^{1/2}$  at different voltages according to the Equation:

$$i = k_1 v + k_2 v^{1/2}$$

Where  $k_1$  and  $k_2$  are appropriate values,  $k_1 v$  is the capacitive contribution while  $k_2 v^{1/2}$ 

corresponds to the diffusion-controlled contribution.



Fig. S19 The separation of capacitive contribution (blue region) from the charge storage at

scan rate of 2 mV s<sup>-1</sup>.



Fig. S20 (a) TEM and (b) HRTEM images of the rGO-FePS<sub>3</sub> electrode after discharging to

0.01 V for sodium storage.



Fig. S21 (a) CV curves at the scan rate of 0.1 mV s<sup>-1</sup> and (b) charge-discharge profiles at 0.05

A g<sup>-1</sup> of b-FePS<sub>3</sub> electrode for SIBs at different cycles.

#### References

1 D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu and J. M. Tour, *ACS Nano*, 2010, **4**, 4806.

- 2 Y. Lu and E. Fong, J. Mater. Chem. A, 2016, 4, 2738.
- 3 Z. Zhang, Z. Li and L. Yin, New J. Chem., 2018, 42, 1467.
- 4 J. Li, D. Yan, X. Zhang, S. Hou, T. Lu, Y. Yao and L. Pan, J. Mater. Chem. A, 2017, 5, 20428.
- 5 H. Li, Y. Su, W. Sun and Y. Wang, Adv. Funct. Mater., 2016, 26, 8345.
- 6 Y. Jiang, Y. Guo, W. Lu, Z. Feng, B. Xi, S. Kai, J. Zhang, J. Feng and S. Xiong, *ACS Appl. Mater. Interfaces*, 2017, **9**, 27697.
- 7 B. Li, P. Gu, G. Zhang, Y. Lu, K. Huang, H. Xue and H. Pang, Small, 2018, 14, 1702184.
- 8 C. Zhu, P. Kopold, W. Li, P. A. van Aken, J. Maier and Y. Yu, Adv. Sci., 2015, 2, 1500200.
- 9 A. A. AbdelHamid, X. Yang, J. Yang, X. Chen and J. Y. Ying, Nano Energy, 2016, 26, 425.
- 10 Q. Tang, Y. Cui, J. Wu, D. Qu, A. P. Baker, Y. Ma, X. Song and Y. Liu, *Nano Energy*, 2017, **41**, 377.
- 11 X. Gao, J. Wang, D. Zhang, K. Adair, K. Feng, N. Sun, H. Zheng, H. Shao, J. Zhong, Y. Ma, X. Sun and X. Sun, *J. Mater. Chem. A*, 2017, **5**, 25625.
- 12 X. Wang, Z. Na, D. Yin, C. Wang, G. Huang and L. Wang, *Energy Storage Mater.*, 2018, **12**, 103.

13 M. Zhang, R. Hu, J. Liu, L. Ouyang, J. Liu, L. Yang and M. Zhu, *Electrochem. Commun.*, 2017, 77, 85.

14 D. Yang, J. Zhu, X. Rui, H. Tan, R. Cai, H. E. Hoster, D. Y. Yu, H. H. Hng and Q. Yan, *ACS Appl. Mater. Interfaces*, 2013, **5**, 1093.

- 15 X. Wang, K. Chen, G. Wang, X. Liu and H. Wang, ACS Nano, 2017, 11, 11602.
- 16 H. Guo, C. Chen, K. Chen, H. Cai, X. Chang, S. Liu, W. Li, Y. Wang and C. Wang, J. *Mater. Chem. A*, 2017, **5**, 22316.
- 17 C. Wu, P. Kopold, P. A. van Aken, J. Maier and Y. Yu, *Adv. Mater.*, 2017, 29, 1604015.
  18 Y. Feng, H. Zhang, Y. Mu, W. Li, J. Sun, K. Wu and Y. Wang, *Chem. Eur. J.*, 2015, 21, 9229.

19 T. Wu, S. Zhang, Q. He, X. Hong, F. Wang, X. Wu, J. Yang and Z. Wen, *ACS Appl. Mater. Interfaces*, 2017, **9**, 28549.

20 Z. Cao, H. Song, B. Cao, J. Ma, X. Chen, J. Zhou and Z. Ma, *J. Power Sources*, 2017, **364**, 208.

- 21 S. Dong, C. Li, X. Ge, Z. Li, X. Miao and L. Yin, ACS Nano, 2017, 11, 6474.
- 22 X. Song, X. Li, Z. Bai, B. Yan, D. Li and X. Sun, *Nano Energy*, 2016, 26, 533.
- 23 R. Sun, Q. Wei, J. Sheng, C. Shi, Q. An, S. Liu and L. Mai, Nano Energy, 2017, 35, 396.
- 24 H. Li, Y. Su, W. Sun and Y. Wang, Adv. Funct. Mater., 2016, 26, 8345.
- 25 D. Lan, W. Wang and Q. Li, *Nano Energy*, 2017, **39**, 506.
- 26 D. Zhou and L.-Z. Fan, J. Mater. Chem. A, 2018, 6, 2139.
- 27 Z. Li, L. Zhang, X. Ge, C. Li, S. Dong, C. Wang and L. Yin, *Nano Energy*, 2017, **32**, 494.
- 28 S. Huang, C. Meng, M. Xiao, S. Ren, S. Wang, D. Han, Y. Li and Y. Meng, *Sustainable Energy Fuels*, 2017, **1**, 1944.
- 29 X. Ge, Z. Li and L. Yin, *Nano Energy*, 2017, **32**, 117.
- 30 Z. Huang, H. Hou, C. Wang, S. Li, Y. Zhang and X. Ji, Chem. Mater., 2017, 29, 7313.