1 An Excellent Full Sodium-Ion Capacitor Derived From a single

2 Ti-based Metal-Organic Frameworks

- 4 Hao Chen, Chunlong Dai, Yanan Li, Renming Zhan, Minqiang Wang, Bingshu Guo, Youquan
- 5 Zhang, Heng Liu, Maowen Xu* and Shu-juan Bao*
- 7 Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest
- 8 University, Chongqing 400715, P.R. China.
- 10 * Corresponding authors.

3

6

9

11 E-mail addresses: xumaowen@swu.edu.cn (M. W. Xu), baoshj@swu.edu.cn (S. J. B).

12 1. Experimental Section

Synthesis and characterization of TiO_xN_y: TiO_xN_y nanowires were obtained by annealing hydrogen 13 titanate nanowires (H₂Ti₃O₇) in ammonia flow at 800 °C. H₂Ti₃O₇ NWs were firstly synthesized by 14 hydrothermal method reported elsewhere. Briefly, TiO₂ anatase (2 g) was added into NaOH solution 15 (30 mL, 15 M) under magnetic stirring for 1 h. Then, the suspension was transferred to a Teflon-lined 16 stainless steel autoclave and heated in an electric oven at 180 °C for 72 h. After cooling down at room 17 temperature, the product was stirred in 0.1 M HCl solution for 24 h. The material was filtered, washed 18 with deionized water and alcohol, and dried at 70 °C for 12 h. Finally, H₂Ti₃O₇ were converted to 19 TiO_xN_y by annealing in NH₃ flow at 800 °C for 4 h with a heating rate of 5 °C min⁻¹. 20

21

22 2. Calculations of specific capacity, energy density and power density

23 The half-cell specific capacity (mAh g⁻¹) is calculated by **Equation S1**;

$$(1) \quad Q = i \times t$$

- 25 Q (mAh g⁻¹) is the half-cell specific capacity; *i* (mA g⁻¹) is the current density; *t* (h) is the charge or discharge time.
- 27 The Na-ion capacitors specific capacity (F g⁻¹), energy density (E) and power density (P) are calculated
- 28 based on Equations S2, S3 and S4;

29 (2)
$$C = I \times \Delta t / (\Delta V)$$

30
$$(3) \quad \mathbf{E} = (\mathbf{C} \times \Delta \mathbf{V}^2)/2$$

31 (4)
$$P = E / \Delta t$$

- 32 C (F g^{-1}) is the Na-ion Capacitors specific capacity; I (A g^{-1}) is the current density; Δt (s) is the
- 33 discharge time. ΔV is the charge-discharge potential window; E (Wh kg⁻¹) is the energy density and P
- 34 (W kg⁻¹) is the power density.
- 35 3. Calculate methods and details of capacitive effect contribution and diffusion-controlled
- 36 contribution
- 37 Using the scan-rate-dependent CV curves (Fig. 4A) to quantify the contribution from capacitive
- 38 effects (both surface pseudocapacitance and doublelayer capacitance) and diffusion-controlled Na⁺
- 39 insertion process to the current response according to the following equation;

$$I(V) = k_1 v + k_2 v^{1/2}$$

- 41 Where I (V), k_1v and $k_2v^{1/2}$ represent the total current response at a given potential V, current due to
- 42 surface capacitive effects, and current due to diffusion-controlled Na⁺ insertion process, respectively.
- 43 The above equation can also be reformulated as;

44
$$I(V)/v^{1/2}=k_1v^{1/2}+k_2$$

- 45 By plotting $I(V)/v^{1/2}$ vs. $v^{1/2}$ at different potentials, we can calculate the values of k_1 (slope) and k_2
- 46 (intercept) from the straight lines. This allows one to quantify the fraction of the current at specific
- 47 potentials to the capacitive effect (k_1v) and diffusion-controlled insertion $(k_2v^{1/2})$ at fixed potential (see
- 48 Fig. S13 A, B). After integration of the enclosed CV area, the amount of stored charge from different
- 49 energy storage modes can be distinguished, expressed by the following equation;

$$Q = Q_s + Q_d$$

- 51 Where, Q, Q_s , and Q_d represent the total stored charge included in the enclosed CV area at set scan
- 52 rate, surface capacitive effects, and diffusion controlled Na⁺ insertion process, respectively.

53 Figures

5455

56575859606162636465

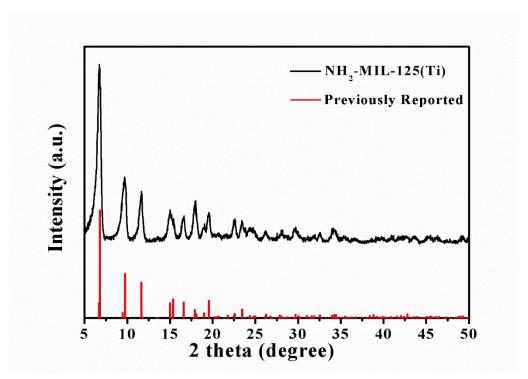
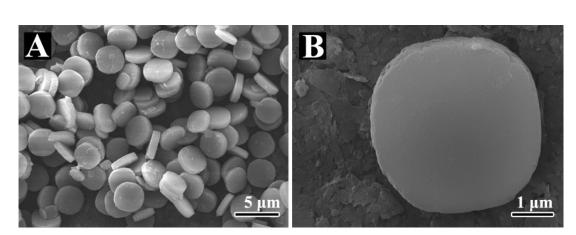



Fig. S1. XRD pattern of as-prepared NH₂-MIL-125(Ti).

67 Fig. S2. (A and B) FESEM images of NH2-MIL-125(Ti) with different resolution.

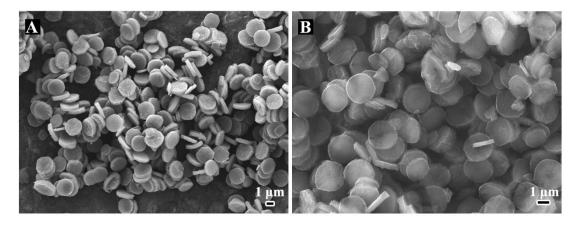
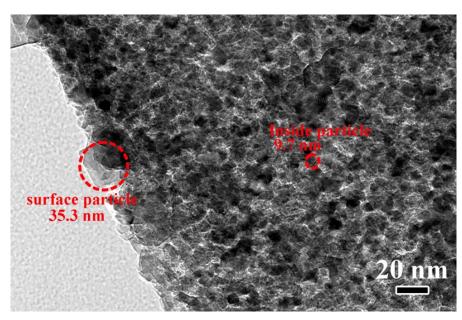



Fig. S3. (A and B) low resolution FESEM images of TiO_xN_y/C and NHPC, respectively.

Fig. S4. bright-field TEM image of TiO_xN_y/C inside structure.

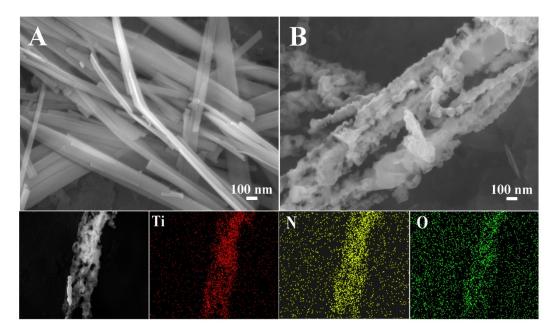
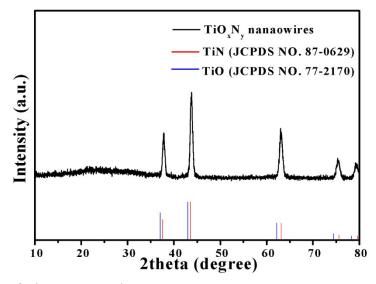
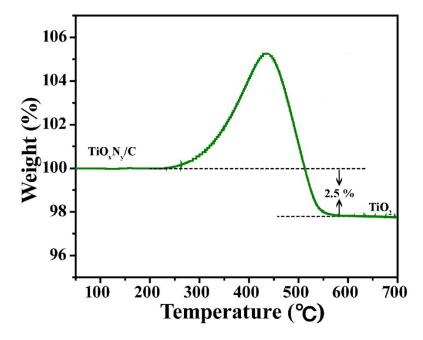




Fig. S5. (A) FESEM image of nanowires precursor, (B) FESEM image of TiO_xN_y nanowires and corresponding FESEM element mapping image.

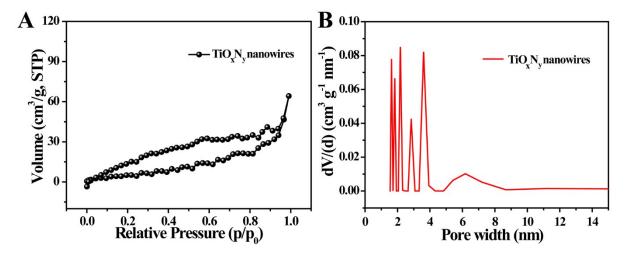

Fig. S6. XRD pattern of TiO_xN_y nanowires.

Fig. S7. Thermogravimetric analysis curves of TiO_xN_y/C.

The TGA data was obtained by annealing in O_2 flow. In the detail, the original speciment is $TiO_xN_y(x+y=1)$ and carbon. The speciment converted to pure TiO_2 phase after TG test. So, according to the the finnal mass of TiO_2 and Invariance Principle of Ti elements in this process, the carbon contents in the TiO_xN_y/C is approximately 22 % by calculated.

Fig. S8. (A) The nitrogen adsorption-desorption isotherms of TiO_xN_y , and (B) the corresponding pore distribution.

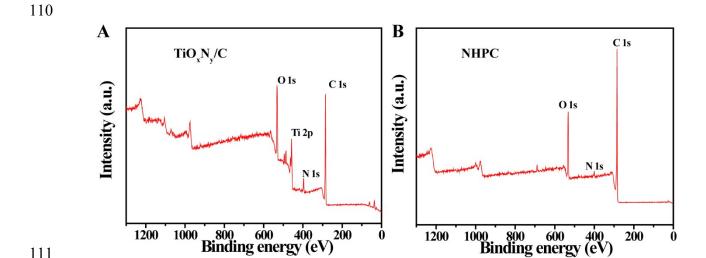


Fig. S9. (A and B) XPS spectra of TiO_xN_v/C and NHPC, respectively.

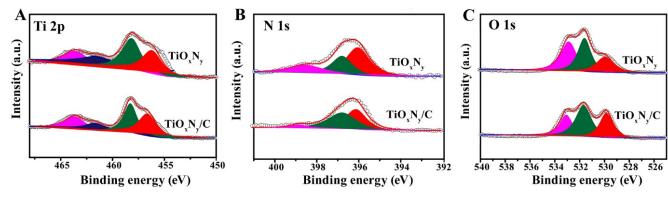


Fig. S10. (A, B and C) the contrast of Ti 2p, N 1s and O 1s XPS spectra between TiO_xN_v/C and TiO_xN_y nanowires, respectively.

Sample	Textural properties	
	$S_{BET}^{a}(m^2g^1)$	V _t (cm ³ g ⁻¹)
C	1731	1.12
TiO_xN_y/C	248	0.5
TiO_xN_y	20.921	0.11

Table S1. the structure information of as-prepared samples.

. . .

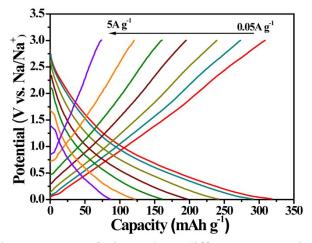
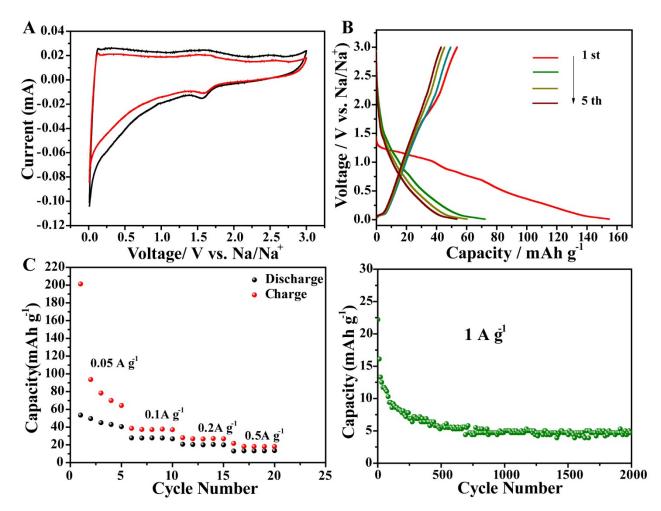



Fig. S11. Charge and discharge curves of TiO_xN_y/C at different current density.

Fig. S12. CV curves (A), first five galvanostatic discharge–charge profiles at 0.05A g¹ (B), rate performance (C) and the cycling stability of at 1A g⁻¹ of TiO_xN_y nanowires.

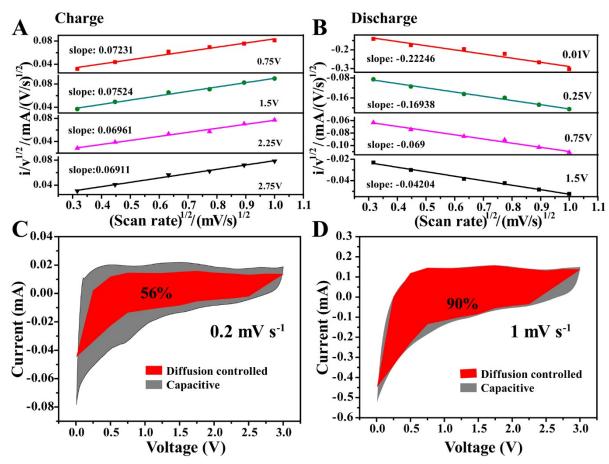
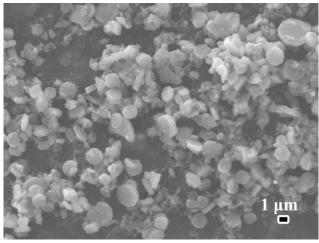
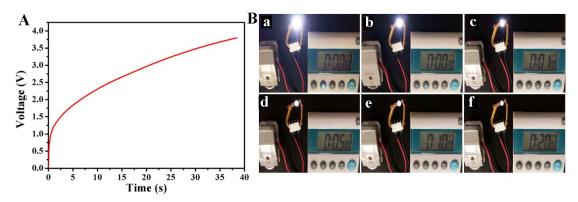




Fig. S13. (A and B) $I/v^{1/2} vs. v^{1/2}$ plots of TiO_xN_y/C used for calculating constants k_1 and k_2 at different potentials, (C and D) Capacitive charge storage contributions at a scan rate of 0.2 mV s⁻¹ and 1 mV s⁻¹.

174 Fig. S14. FESEM images of TiO_xN_y/C after electrochemical cycles test.

Fig. S15. The rapid charging curves in 40s of $TiO_xN_y/C//NHPC$ SICs (B), and the Photographs of a light emitting diode powered by a rapid charging TiO_xN_y/C // NHPC SIC in 40 s under time recording by a timer.