Electronic Supplementary Information

Ultrathin Nickel Boride Nanosheets Anchored on Functionalized Carbon Nanotubes as Bifunctional Electrocatalysts for Overall Water Splitting

Xuncai Chen,^a Zixun Yu,^a Li Wei,^a Zheng Zhou,^a Shengli Zhai,^a Junsheng Chen,^a Yanqing

Wang,^b Qianwei Huang,^c H. Enis Karahan,^{a, d} Xiaozhou Liao,^c and Yuan Chen^{a,*}

^a The University of Sydney, School of Chemical and Biomolecular Engineering, Sydney, New South Wales, 2006, Australia

^b Faculty of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan

^c The University of Sydney, School of Aerospace, Mechanical and Mechatronic Engineering, Sydney, New South Wales, 2006, Australia

^d School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore

E-mail address: <u>yuan.chen@sydney.edu.au</u> (Y. Chen)

Fig. S1 Raman spectra of commercial multi-walled carbon nanotubes (MWCNTs) at pristine and chemically functionalized forms: p-MWCNTs and f-MWCNTs. (Note that pristine MWCNTs were not subjected to chemical cleaning and tested in their as-received form.)

Fig. S2 Characterization of the morphology and structure properties of NixB/f-MWCNT hybrids before 300 °C calcination. (a) SEM; (b) the corresponding EDX elemental mappings of the whole region of (a); (c) XRD.

Fig. S3 (a) SEM and (b) TEM images of f-MWCNTs.

Fig. S4 (a) SEM and (b) TEM images of Ni_xB nanosheets.

Fig. S5 EDS spectrum of Ni_xB/f-MWCNT.

Table S1 Elemental compositions (at. %) of f-MWCNT, Ni_xB, and Ni_xB/f-MWCNT determined by EDX^a, XPS^b, and ICP^c.

Materials	С	0	В	Ni
f-MWCNT ^b	77.7	22.3	_	_
Ni _x B ^b	_	_	26.31	73.69
Ni _x B/f-MWCNT ^a	61.87	15.31	5.82	17.01
Ni _x B/f-MWCNT ^b	47.10	20.02	8.13	24.75
Ni _x B/f-MWCNT ^c	_	_	25.8	74.2

Fig. S6 XRD patterns of Ni_xB/f -MWCNT and Ni_xB . The reference XRD peaks of Ni_3B (red vertical lines, JCPDS No. 48-1223) and $Ni_3(BO_3)_2$ (pink vertical lines, JCPDS No. 26-1284).

Figure S7 AFM images of Ni_xB/f -MWCNT in 2D and 3D projection, recorded in the tapping mode, and the corresponding height profile.

Fig. S8 Nitrogen adsorption-desorption isotherms of Ni_xB . The inset shows the pore size distribution of Ni_xB .

Fig. S9 TGA profile of Ni_xB/f-MWCNT.

Fig. S10 XPS survey scan of Ni_xB/f-MWCNT.

Fig. S11 Raman spectra of Ni_xB/f-MWCNT and f-MWCNT.

Fig. S12 (a) SEM and (b) TEM images of the physical mixture Ni_xB and f-MWCNT (Ni_xB +f-MWCNT). The areas circled by dashed lines show aggregated Ni_xB particles.

Catalyst	Loading (mg cm ⁻²)	Tafel slope (mV dec ⁻¹)	η ₁₀ (mV)	$\frac{\mathbf{TOF}}{(\mathbf{s}^{-1})}$	Ref.	
Ni _x B/f- MWCNT	0.2	46.3	286	0.058	This work	
Ni _x B nanosheets	0.2	107.1	375	0.0432	This work	
IrO ₂ (reference)	0.2	71.2	338	-	This work	
Pc-Ni-B@NB	0.3	52	302	0.026 0.052	Angew. Chem. Int. Ed. 2017, 56, 6572	
Ni _x B-300	0.21	N/A	380	0.048	Adv. Energy Mater. 2017, 7, 1700381	
Co ₂ B-500	0.21	45	380	_	Adv. Energy Mater. 2016, 6, 1502313	
CoB NS/G	0.285	53	290	_	Angew. Chem. Int. Ed. 2016, 55, 2488	
FeB ₂	0.2	52.4	296	_	Adv. Energy Mater. 2017, 7, 1700513	
Ni3B-rGO	0.2	88.4	290	_	Electrochem. Commun. 2018, 86, 121	
Ni-Fe-B/rGO	0.2	58	265	_	J. Solid State Chem. 2018, 265,13.	
Co-Mo-B	2.1	150	320	_	Electrochimica Acta. 2017, 232, 64	
Co-Ni-B@NF	_	131	313	_	J. Mater. Chem. A, 2017, 5, 12379.	
NiO	0.14	65	365	_	Energy Environ. Sci. 2015, 8, 2347	
Ni ₂ P	0.14	47	290	_	Energy Environ. Sci. 2015, 8, 2347	
Ni-P	0.2	64	300	_	Energy Environ. Sci. 2016 , 9, 1246	
NiPS ₃	0.2	80	350	_	ACS Catal. 2017, 7, 229	
NiPS3-G-1:1	0.2	42.6	294	0.0564	ACS Nano 2018, 12, 5297	
Ni _{0.6} Co _{1.4} (OH) ₂	0.35	80	300	_	<i>Adv. Funct. Mater.</i> 2018 , <i>28</i> , 1706008	
Ni(OH) ₂	0.2	42	331	0.0361	J. Am. Chem. Soc. 2014, 136, 7077	
Ni ₃ Se ₂	0.217	79.5	310	0.044	Energy Environ. Sci. 2016 , 9. 1771	
NGO/Ni7S6	0.21	45.4	380	_	<i>Adv. Funct. Mater.</i> 2017 , <i>27</i> , 1700451	

Table S2 Comparison of OER activity of recently reported nickel-based or metal-boride based
 electrocatalysts. (Note that the support material used in all examples given below.)

^{\dagger} N/A: not available.

Fig. S13 Linear sweep voltammograms (LSVs) of Ni_xB/f -MWCNT in 1.0 M KOH before and after Chronopotentiometry operation for 100 h under the current density of 20 mA cm⁻². a) OER, and b) HER.

Fig. S14 Characterization of Ni_xB/f -MWCNT after the 100-hour OER test in 1 M KOH electrolyte under the current density of 20 mA cm⁻². (a) SEM image and (b) the corresponding EDX elemental mappings of C, O, Ni, and B.

Fig. S15 (a) XPS survey spectrum of Ni_xB/f -MWCNT after the 100-hour OER test in 1 M KOH electrolyte under the current density of 20 mA cm⁻², and (b) the corresponding core-level XPS spectra near the region of Ni2p.

Fig. S16 Cyclic voltammogram (CV) curves of (a) Ni_xB /f-MWCNT and (b) Ni_xB recorded in a non-Faradic region in 1 M KOH at different scan rates of 20, 40, 60, 80, and 100 mV s⁻¹.

Fig. S17 CV curves of (a) Ni_xB/f -MWCNT and (b) Ni_xB at the different scan rates from 2 to 22 mV s⁻¹ in 1 M KOH electrolyte. The inset figures show the corresponding plots of the oxidation peak current *vs*. the scan rate extracted from (a) and (b), respectively.

Fig. S18 Characterization of Ni_xB/f -MWCNT after the 100-hour HER test in 1 M KOH electrolyte under the current density of 20 mA cm⁻². (a) SEM image and (b) the corresponding EDX elemental mappings of C, O, Ni, and B.

Fig. S19 (a) XPS survey spectrum of Ni_xB/f -MWCNT after the 100-hour HER test in H₂-saturated 1 M KOH electrolyte under the current density of 20 mA cm⁻², and (b) the corresponding corelevel XPS spectra near the region of Ni2p.

Catalyst	Support	Loading (mg cm ⁻²)	Tafel slope (mV dec ⁻¹)	η ₁₀ (mV)	Ref.	
Ni _x B/f-MWCNT	Glassy carbon	0.2	70.4	116	This work	
Ni _x B nanosheets	S/A	0.2	152.1	277	This work	
Ni _x B+f-MWCNT	S/A	0.2	103.9	209	This work	
Pt/C (reference)	S/A	0.2	57.2	62	This work	
Co ₂ B-500/NG	S/A	0.21	92.4	127	<i>Adv. Energy Mater.</i> 2016 , <i>6</i> , 1502313	
FeB ₂	S/A	0.2	87.5	61	<i>Adv. Energy Mater.</i> 2017 , <i>7</i> , 1700513	
NiO/Ni-CNT	S/A	0.28	82	<100	Nat. Commun. 2014, 5, 4695	
NiO nanorods	S/A	0.2	100	~110	Nano Energy. 2018, 43, 103	
$1TMoS_2/Ni^{2+\delta}O_{\delta}(OH)_{2-\delta}$	S/A	0.4	105	185	Adv. Sci. 2018, 5, 1700644	
MoC _x	S/A	0.8	59	151	Nat. Commun. 2015, 6, 6512	
MoxC-Ni@NCV	S/A	1.1	93	126	J. Am. Chem. Soc. 2015, 137, 15753	
Ni ₂ P	S/A	1.8	_	220	Energy Environ. Sci. 2015, 8, 2347	
Ni ₂ P	S/A	1	_	~180	J. Am. Chem. Soc. 2013, 135, 9267	
СоР	Carbon cloth	0.92	129	209	J. Am. Chem. Soc. 2014, 136, 7587	
NiCo ₂ S ₄	Nickel foam	_	58.9	210	Adv. Funct. Mater. 2016, 26, 4661	
N-doped Ni ₃ S ₂	S/A	0.6	113	155	<i>Adv. Energy Mater.</i> 2018 , <i>8</i> , 1703538	
NF-NiS ₂	S/A	_	63	122	Nano Energy. 2017, 41, 148	
Ni/NiS	S/A	_	123.3	230	Adv. Funct. Mater. 2016, 26, 3314	
o-CoSe ₂ P	o-CoSe ₂ P	1.02	69	104	Nat. Commun. 2018, 9, 2533	
NiSe/NF	Nickel foam	_	120	96	Angew. Chem. Int. Ed. 2015, 54, 9351	

Table S3. The HER performance of recently reported nickel- or TMB-based electrocatalysts.

[†] S/A: same as above.

Anode	Cathode	Loading (mg cm ⁻²)	η ₁₀ (mV)	Ref.
Ni _x B/f-MWCNT	Ni _x B/f-MWCNT	1.0	1.60	This work
IrO ₂ (reference)	Pt/C (reference)	1.0	1.62	This work
Ni/NiP	Ni/NiP	10.58	1.61	Adv. Funct. Mater. 2016, 26, 3314
Ni ₂ P	Ni ₂ P	5	1.63	Energy Environ. Sci. 2015, 8, 2347
NiCo ₂ P ₂ /G NSs	NiCo ₂ P ₂ /G NSs	0.31	161	Nano Energy. 2018, 48, 284
Ni11(HPO3)8(OH)6	Ni11(HPO3)8(OH)6	3	1.65	Energy Environ. Sci., 2018 , 11, 1287
NiSe/NF	NiSe/NF	2.8	1.63	Angew. Chem. Int. Ed. 2015, 54, 9351
NiCo ₂ O ₄	Ni0.33C00.67S2	0.3	1.72	Adv. Energy Mater. 2015, 5, 1402031
Co _{0.85} Se/NiFe-LDH	Co _{0.85} Se/NiFe-LDH	4	1.66	Energy Environ. Sci. 2016, 9, 478
BSCF/NF	BSCF/NF	0.387	1.72	Sci. Adv. 2017, 3, e1603206
Ni5P4 films/Ni	Ni5P4 films/Ni	3.5	~1.68	Angew. Chem. Int. Ed. 2015, 127, 12538
SNCF-NR	SNCF-NR	3	1.68	Adv. Energy Mater. 2017, 7, 1602122
Fe-doped CoP	Fe-doped CoP	1.03	1.60	Adv. Mater. 2017, 29, 1602441
NiCo ₂ S ₄ /NF	NiCo ₂ S ₄ /NF	6.5	1.61	Adv. Mater. Interf. 2018, 5, 1701396
CP/CTs/Co-S	CP/CTs/Co-S	0.32	1.743	ACS Nano. 2016, 10, 2342
NiFeO _x /CFP	NiFeO _x /CFP	1.6	~1.61	Nat. Commun. 2015, 6, 8261
NiFe LDH/NF	NiFe LDH/NF	_	1.70	Science 2014, 345, 1593
Ni ₃ FeN/r-GO	Ni ₃ FeN/r-GO	0.5	1.60	ACS Nano 2018, 12, 245

Table S4. Comparison of the bifunctional water splitting activity of the Ni_xB/f-MWCNT catalyst with other recently reported bifunctional electrocatalysts in 1 M alkaline electrolytes.

Fig. S20. The amount of gas theoretically calculated and experimentally measured vs. time for OER and HER vs. time for Ni_xB/f -MWCNT.