Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information

Strain Buffering Effect of Quasi-Amorphous Disordered Microstructure Enabling Long-Term Fast Sodium Storage Performance

Qiming He^{a,b}, Sanpei Zhang^a, Xiangwei Wu^{a,b}, Jianhua Yang^{a,b} and Zhaoyin Wen^{*a,b}

^a CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 DingXi Road, Shanghai 200050, PR. China.

^b University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR. China

*Corresponding author

Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 DingXi Road, Shanghai 200050, P. R. China

Tel: +86-21-52411704

Fax: +86-21-52413903

E-mail: <u>zywen@mail.sic.ac.cn</u>

Fig. S1 (a-b) SEM secondary electronic images of the FLD-MoS₂/NC.

Fig. S2 Electronic image and the corresponding elemental mapping analysis of the FLD-MoS $_2$ /NC.

Fig. S3 The N₂ adsorption-desorption isotherm of the FLD-MoS₂/NC.

Fig. S4 The curve of cumulative intrusion vs. pore size of the FLD-MoS₂/NC.

Fig. S5 XRD patterns of the samples without adding pyrrole monomer or PVP or both.

Fig. S6 HR-TEM images of the comparison among (a) MoS₂-no pyrrole, (b) MoS₂-no PVP, (c) MoS₂-no PVP/pyrrole and (d) commercial MoS₂.

Fig. S7 Illustration of E^{1}_{2g} and A_{1g} vibration modes of MoS₂.

Fig. S8 FTIR analysis of the FLD-MoS₂/NC, commercial MoS₂ and PPy.

Fig. S9 TG analysis of FLD-MoS₂/NC and commercial MoS₂.

From 300 °C to 600 °C, an obvious weight loss of 45.8% can be observed for the FLD-MoS₂/NC. For commercial MoS₂ during the same temperature range, the weight loss is 8.2%. Then the weight ratio of the N-doped carbon in the FLD-MoS₂/NC is calculated to be 40.96%. The calculation is presented as follows. Set the weight ratios of MoS₂ and N-doped carbon as ω_1 and ω_2 , respectively. Then we have the following equations.

$$\omega_1 + \omega_2 = 100\%$$

 $\omega_1 \times 8.2\% + \omega_2 = 45.8\%$

Finally, we can calculate that the weight ratio of N-doped carbon (ω_2) is 40.96%.

Fig. S10 Cycle performance comparison among FLD-MoS₂/NC, MoS₂-no PVP, MoS₂-no PVP/pyrrole, MoS₂-no pyrrole and commercial MoS₂. The current density is 1 A g^{-1} .

Fig.S11 The sodium storage performance of the carbon matrix at the current density of 1 A g^{-1} .

Fig. S12 Percentage of NC contribution to the capacity of FLD-MoS₂/NC at 1 A g⁻¹. For the purpose of consistency, the electrode of N-doped carbon matrix was also prepared in the weight ratio of 70 wt.% active material, 20 wt.% Super-P conductive carbon black and 10 wt.% PVDF binder. The capacity was normalized to the weight of active material. The calculation of NC contribution is presented as follows. Set the experimental specific capacities of FLD-MoS₂/NC and NC as C and C_N, respectively. The masses of FLD-MoS₂/NC and NC are set as m and m_N, respectively. The weight ratio of NC is ω_N . Then the NC contribution to the capacity (W) should be expressed as the equation below.

$$W = \frac{C_N m_N}{Cm} = \frac{C_N}{C} \omega_N$$

The values of C, C_N and ω_N can be obtained from Fig. 4c, Fig. S11 and Fig. S9, respectively. Then the NC contribution to the capacity at 1 A g⁻¹ is presented below. It can be seen that during the 1000 cycles at 1 A g⁻¹, the NC contribution to the whole capacity is in the range from 8% to 11%.

Fig. S13 Prolonged cycle performance of FLD-MoS₂/NC at 1A g⁻¹.

Fig. S14 Cycle performance based on volumetric capacity of the FLD-MoS₂/NC.

	Fig.	S15	The e	equiv	alent	circuit	for	EIS	analysis
--	------	------------	-------	-------	-------	---------	-----	-----	----------

	Rb	Rct
FLD-MoS ₂ /NC	9.89 Ω	152 Ω
MoS ₂ without NC	12.3 Ω	691 Ω

Table S1 EIS analysis of the FLD-MoS₂/NC and MoS₂ without NC after cycling.

Fig. S16 Nyquist plot of the FLD-MoS₂/NC after 1000 and 5000 cycles at 1 A g^{-1} .

Fig. S17 XRD pattern of the NVP/C.

Fig. S18 Charge-discharge curves of the NVP/C at 0.1 C for the initial 5 cycles in Na half-cell.

Fig. S19 Initial charge-discharge curves of Na-ion full cell at 0.1 C.

Fig. S20 Cycle performance of Na-ion full cell at 0.1 C.

Fig. S21 SEM images of electrodes before cycling: (a) FLD-MoS₂/NC, (b) MoS₂-no pyrrole (c) MoS₂-no PVP and (d) MoS₂-no PVP/pyrrole.