Supporting Information

Three-dimensional nitrogen-doped holey graphene and transition metal oxide composites for sodium-Ion batteries

Dongfang Yang^a, Binghui Xu^b, Qinglan Zhao^a and X. S. Zhao^{a,b*}

^aSchool of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia

^bInstitute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China

*Corresponding authors E-mail: george.zhao@uq.edu.au

Fig.S1 SEM images of (a) NCO@G (the inset shows its TEM image), (b) NCO, (c) Fe₃O₄@G and (d) Fe₃O₄.

Fig. S2 (a) Argon adsorption/desorption isotherms and (b) DFT pore size distributions of NCO@N-HG.

Fig. S3 XRD patterns of GO (top) and N-HG (bottom).

Fig. S4 Cycling performance of N-HG electrode at 0.1 A g⁻¹ tested using a NIB cell.

Fig. S5 TGA curves of (a) NCO@G and Fe₃O₄@G, and (b) NCO@N-HG and Fe₃O₄@N-HG in air.

The weight loss below 500 °C was due to the removal of the graphene in the composite materials. In the temperature range between 500 to 700 °C, both samples showed minor weight loss, which was probably due to weight loss from NCO or Fe_3O_4 .^{1,2}

Fig. S6 (a) Argon adsorption/desorption isotherms, (b) DFT pore size distributions of $Fe_3O_4@N-HG$. (c) XRD patterns for $Fe_3O_4@N-HG$ and the standard Fe_3O_4 (JCPDS card no. 75-0033).

References:

- 1. Chi, B.; Li, J.; Han, Y.; Chen, Y. Int. J. Hydrog. Energy, 2004, 29, 605–610.
- 2. Ayyappan, S.; Gnanaprakash, G.; Panneerselvam, G.; Antony, M. P.; Philip, J. J. Phys. Chem. C 2008, **112**, 18376–18383.