### *Electronic Supplementary Information (ESI) for the manuscript:*

# Polymeric iodobismuthates {[Bi<sub>3</sub>I<sub>10</sub>]} and {[BiI<sub>4</sub>]} with N-heterocyclic cations: promising perovskite-like photoactive materials for electronic devices

Andrey N.Usoltsev,<sup>a</sup> Moneim Elshobaki,<sup>b,c</sup> Sergey A. Adonin,<sup>a,b,d</sup> Lyubov A. Frolova,<sup>b,e</sup> Tatiyana Derzhavskaya,<sup>e</sup> Pavel A. Abramov,<sup>a,d</sup> Denis V. Anokhin,<sup>e,f,g</sup> Ilya V. Korolkov,<sup>a,d</sup> Sergey Yu. Luchkin,<sup>b</sup> Nadezhda N. Dremova,<sup>e</sup> Keith J. Stevenson,<sup>b</sup> Maxim N. Sokolov,<sup>a,d</sup> Vladimir P. Fedin,<sup>a,d</sup> Pavel A. Troshin<sup>b,e\*</sup>

- <sup>a</sup> Nikolaev Institute of Inorganic Chemistry, Lavrentieva St. 3, Novosibirsk, Russia
- <sup>b</sup> Skolkovo Institute of Science and Technology, 121205 Nobel St. 3, Moscow, Russia
- <sup>c</sup> Physics Department, Mansoura University, Mansoura, Egypt,35516
- <sup>d</sup> Novosibirsk State University, Pirogova St. 2, Novosibirsk, Russia
- <sup>e</sup> Institute for Problems of Chemical Physics RAS, 142432 Academician Semenov St. 1, Chernogolovka, Russia
- <sup>f</sup> Faculty for Physicochemical Engineering, Moscow State University, Moscow, Russia
- <sup>g</sup> Moscow Institute of Physics and Technology (State University), Institutskiy per. 9, Dolgoprudny,
- 141700, Russia

#### Table of contents

| Table 1S. Selected geometric parameters in 1-6 (Å)                          | 2     |
|-----------------------------------------------------------------------------|-------|
| Table 2S. Experimental details                                              | 3-4   |
| Figure 1S-6S. Powder XRD data for 1-6                                       | 5-10  |
| Figure 7S-12S. Diffuse reflectance spectra of 1-6                           | 11-12 |
| Figure 13S-15S. XRD patterns of thin films of 1, 3 and 5                    | 17-19 |
| Figure 16S-17S. Evolution of XRD patterns of films of 3 and 5 as a          | 20-21 |
| function of the annealing temperature                                       |       |
| Figure 18S. Evolution of the absorption spectra of $MA_3Bi_2I_9$ thin films | 22    |
| during continuous thermal annealing at 65-70 °C                             |       |
| Figure 19S-21S. TGA data of 1, 2,3, 4, 5 and 6.                             | 23-25 |
| Figure 22S-24S. 2D GIXRD profiles and orientation of Bi-I molecular         | 26-28 |
| frameworks in 1, 3 and 5                                                    |       |
| Figure 25S. Top and cross-sectional SEM images of 1, 3, 5 and 6.            | 29    |
| <b>Figure 26S.</b> AFM maps of 1, 3, 5 and 6.                               | 30    |
| Figure 27S. Current-voltage characteristics of thin films of 3 illustrating | 31    |
| lateral photoconductivity effect                                            |       |
| Figure 28S. Current–voltage characteristics of the lateral diodes with the  | 32    |
| photoactive films of fullerene C <sub>60</sub> (100 nm)                     |       |
| Figure 29S. Evolution of the absorption spectra of $3+I_2$ films under      | 32    |
| thermal annealing                                                           |       |

# X-ray crystallography

| 1                      |            | 2                      |            | 3                     |            |  |  |
|------------------------|------------|------------------------|------------|-----------------------|------------|--|--|
| I1—Bi1                 | 3.0880 (7) | I1—Bi1                 | 3.2380 (4) | I4—Bi1 <sup>vi</sup>  | 3.1482 (6) |  |  |
| I1—Bi2 <sup>i</sup>    | 3.1603 (7) | I1—Bi1 <sup>v</sup>    | 3.2380 (4) | I5—Bi3 <sup>vi</sup>  | 3.4171 (5) |  |  |
| I2—Bi1                 | 3.0623 (6) | I2—Bi1 <sup>v</sup>    | 3.2526 (4) | I7—Bi3 <sup>vi</sup>  | 3.1796 (6) |  |  |
| I2—Bi2                 | 3.3967 (8) | I3—Bi1 <sup>v</sup>    | 3.2638 (4) | I10—Bi3               | 2.8621 (5) |  |  |
| I2—Bi2 <sup>ii</sup>   | 3.4113 (8) | Bi1—I2                 | 3.2526 (4) | Bi1—I1                | 2.8611 (6) |  |  |
| I3—Bi1                 | 3.0881 (6) | Bi1—I3                 | 3.2639 (4) | Bi1—I2                | 2.8496 (5) |  |  |
| I3—Bi2                 | 3.1145 (8) | Bi1—I4                 | 2.9517 (4) | Bi1—I3                | 3.0883 (6) |  |  |
| I4—Bi2                 | 2.8543 (8) | Bi1—I5                 | 2.9476 (4) | Bi1—I4 <sup>vii</sup> | 3.1482 (6) |  |  |
| I5—Bi2                 | 2.8597 (9) | Bi1—I6                 | 2.9462 (4) | Bi1—I6                | 3.4192 (5) |  |  |
| Bi1—I1 <sup>iii</sup>  | 3.0880 (7) |                        |            | Bi2—I3                | 3.1098 (5) |  |  |
| Bi1—I2 <sup>iii</sup>  | 3.0622 (6) |                        |            | Bi2—I4                | 3.0331 (5) |  |  |
| Bi1—I3 <sup>iii</sup>  | 3.0881 (6) |                        |            | Bi2—I5                | 3.0993 (6) |  |  |
| Bi2—I1 <sup>iv</sup>   | 3.1603 (7) |                        |            | Bi2—I6                | 3.0578 (5) |  |  |
| Bi2—I2 <sup>ii</sup>   | 3.4112 (9) |                        |            | Bi2—I7                | 3.0454 (5) |  |  |
|                        |            |                        |            | Bi2—I8                | 3.1418 (5) |  |  |
|                        |            |                        |            | Bi3—I5 <sup>vii</sup> | 3.4171 (5) |  |  |
|                        |            |                        |            | Bi3—I6                | 3.4276 (5) |  |  |
|                        |            |                        |            | Bi3—I7 <sup>vii</sup> | 3.1796 (6) |  |  |
|                        |            |                        |            | Bi3—I8                | 3.0595 (5) |  |  |
|                        |            |                        |            | Bi3—I9                | 2.8591 (5) |  |  |
|                        |            |                        |            |                       |            |  |  |
| 4                      |            | 5                      |            | 6                     |            |  |  |
| I002—Bi01              | 3.2812 (5) | I1—Bi1                 | 3.0846 (4) | I1—Bi1                | 3.1299 (6) |  |  |
| I002—Bi01 <sup>v</sup> | 3.2812 (5) | I1—Bi1 <sup>viii</sup> | 3.2824 (5) | I1—Bi1 <sup>xi</sup>  | 3.2138 (6) |  |  |
| I003—Bi01              | 3.2450 (6) | I2—Bi1                 | 2.9027 (5) | I2—Bi1                | 2.9569 (6) |  |  |
| I003—Bi01 <sup>v</sup> | 3.2451 (6) | Bi1—I1 <sup>ix</sup>   | 3.0846 (5) | I3—Bi1                | 2.8977 (7) |  |  |
| I004—Bi01              | 3.2679 (6) | Bi1—I1 <sup>viii</sup> | 3.2824 (5) | I4—Bi1                | 3.0339 (6) |  |  |
| I004—Bi01 <sup>v</sup> | 3.2679 (6) | Bi1—I1 <sup>x</sup>    | 3.2824 (5) | I4—Bi1 <sup>xii</sup> | 3.3478 (7) |  |  |
| I005—Bi01              | 2.9547 (6) | Bi1—I2 <sup>ix</sup>   | 2.9027 (5) | Bi1—I1 <sup>xi</sup>  | 3.2138 (6) |  |  |
| I006—Bi01              | 2.9580 (6) |                        |            | Bi1—I4 <sup>xii</sup> | 3.3479 (7) |  |  |
| I007—Bi01              | 2.9464 (6) |                        |            |                       |            |  |  |

Table 1S. Selected geometric parameters in 1-6 (Å)

Symmetry code(s): (i) x+1/2, y+1/2, z; (ii) -x, -y+1, -z+1; (iii) -x+1/2, -y+3/2, -z+1; (iv) x-1/2, y-1/2, z; (v) x, -y+1/2, z; (vi) x+1, y, z; (vii) x-1, y, z; (viii) -x-1, -y+2, -z+1; (ix) -x-1/2, y, -z+1; (x) x+1/2, -y+2, z; (xi) -x+1, -y+1, -z+1; (xii) -x+2, -y+1, -z+1.

#### Table 2S. Experimental details

Experiments were carried out at 130 K with Mo  $K\alpha$  radiation using a New Xcalibur, AtlasS2. Absorption was corrected for by multi-scan methods, *CrysAlis PRO* 1.171.38.41 (Rigaku Oxford Diffraction, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

| Parameter                                                                         | 1                                                                                         | 2                                                                                                   | 3                                                                                         | 4                                                                                    |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Chemical formula                                                                  | C <sub>6</sub> H <sub>8</sub> Bi <sub>3</sub> I <sub>10</sub> N                           | C <sub>18</sub> H <sub>24</sub> Bi <sub>2</sub> I <sub>9</sub> N <sub>3</sub>                       | $C_7 H_{10} B i_3 I_{10} N$                                                               | C <sub>23</sub> H <sub>33</sub> Bi <sub>2</sub> I <sub>9</sub> N <sub>4</sub>        |
| M <sub>r</sub>                                                                    | 1990.07                                                                                   | 1842.46                                                                                             | 2004.10                                                                                   | 1925.59                                                                              |
| Crystal system, space group                                                       | Monoclinic, C2/c                                                                          | Orthorhombic, Pnma                                                                                  | Monoclinic, $P2_1/n$                                                                      | Orthorhombic, Pnma                                                                   |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                                                | 10.8976 (3),<br>11.2977 (3),<br>23.3163 (7)                                               | 15.5976 (8),<br>23.0812 (13),<br>11.0806 (5)                                                        | 7.6530 (2),<br>27.2277 (6),<br>14.2784 (4)                                                | 16.4361 (4),<br>22.9617 (9),<br>11.2234 (3)                                          |
| α, β, γ (°)                                                                       | 90, 98.257 (3), 90                                                                        | 90, 90, 90                                                                                          | 90, 95.354 (2), 90                                                                        | 90, 90, 90                                                                           |
| $V(Å^3)$                                                                          | 2840.89 (14)                                                                              | 3989.1 (4)                                                                                          | 2962.26 (13)                                                                              | 4235.7 (2)                                                                           |
| Ζ                                                                                 | 4                                                                                         | 4                                                                                                   | 4                                                                                         | 4                                                                                    |
| μ (mm <sup>-1</sup> )                                                             | 29.40                                                                                     | 15.79                                                                                               | 28.20                                                                                     | 14.88                                                                                |
| Crystal size (mm)                                                                 | $0.20 \times 0.15 \times 0.05$                                                            | $0.22\times0.15\times0.08$                                                                          | $0.10\times 0.05\times 0.05$                                                              | $0.20 \times 0.08 \times 0.05$                                                       |
| $T_{\min}, T_{\max}$                                                              | 0.143, 1.000                                                                              | 0.715, 1.000                                                                                        | 0.447, 1.000                                                                              | 0.286, 1.000                                                                         |
| No. of measured,<br>independent and<br>observed $[I > 2\sigma(I)]$<br>reflections | 7228, 3399, 3056                                                                          | 13234, 4797, 4278                                                                                   | 15177, 6958, 5735                                                                         | 14012, 5268, 4248                                                                    |
| R <sub>int</sub>                                                                  | 0.091                                                                                     | 0.029                                                                                               | 0.025                                                                                     | 0.047                                                                                |
| θ values (°)                                                                      | $\theta_{\text{max}} = 29.6, \ \theta_{\text{min}} = 3.5$                                 | $\theta_{\text{max}} = 29.5, \ \theta_{\text{min}} = 3.5$                                           | $\theta_{\text{max}} = 29.6, \ \theta_{\text{min}} = 3.3$                                 | $\theta_{\rm max} = 29.6,  \theta_{\rm min} = 3.5$                                   |
| $(\sin \theta / \lambda)_{max} (\text{Å}^{-1})$                                   | 0.694                                                                                     | 0.693                                                                                               | 0.694                                                                                     | 0.694                                                                                |
| Range of <i>h</i> , <i>k</i> , <i>l</i>                                           | $-13 \le h \le 14,$<br>$-15 \le k \le 13,$<br>$-31 \le l \le 26$                          | $-21 \le h \le 14,$<br>$-29 \le k \le 18,$<br>$-13 \le l \le 14$                                    | $-7 \le h \le 10,$<br>$-37 \le k \le 26,$<br>$-19 \le l \le 19$                           | $-22 \le h \le 15,$<br>$-19 \le k \le 31,$<br>$-14 \le l \le 8$                      |
| $R[F^2 > 2\sigma(F^2)],$<br>$wR(F^2), S$                                          | 0.051, 0.127, 1.07                                                                        | 0.029, 0.064, 1.14                                                                                  | 0.030, 0.054, 1.04                                                                        | 0.038, 0.090, 1.06                                                                   |
| No. of reflections, parameters, restraints                                        | 3399, 94, 0                                                                               | 4797, 154, 0                                                                                        | 6958, 190, 0                                                                              | 5268, 179, 0                                                                         |
| H-atom treatment                                                                  | H-atom parameters constrained                                                             | H-atom parameters constrained                                                                       | H-atom parameters constrained                                                             | H-atom parameters constrained                                                        |
|                                                                                   | $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0711P)^{2}]$<br>where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ | $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0249P)^{2} + 5.1565P]$<br>where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ | $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0181P)^{2}]$<br>where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ | $w = 1/[\sigma^2(F_o^2) + (0.0336P)^2 + 18.9353P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$           | 2.78, -4.45                                                                               | 0.93, -1.72                                                                                         | 1.38, -1.58                                                                               | 2.29, -4.15                                                                          |

| parameter                                                                         | 5                                                                               | 6                                                                         |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Chemical formula                                                                  | C <sub>10</sub> H <sub>10</sub> BiI <sub>4</sub> N                              | $C_{10}H_{10}BiI_4N$                                                      |
| M <sub>r</sub>                                                                    | 860.77                                                                          | 860.77                                                                    |
| Crystal system, space group                                                       | Monoclinic, <i>I</i> 2/ <i>a</i>                                                | Triclinic, P <sup>-1</sup>                                                |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                                                | 7.6699 (3), 16.3360 (7), 13.1719 (6)                                            | 7.6749 (3), 10.0389 (4), 11.4778 (5)                                      |
| α, β, γ (°)                                                                       | 90, 91.060 (4), 90                                                              | 71.809 (4), 84.837 (3), 83.290 (3)                                        |
| $V(Å^3)$                                                                          | 1650.10 (12)                                                                    | 833.04 (6)                                                                |
| Ζ                                                                                 | 4                                                                               | 2                                                                         |
| μ (mm <sup>-1</sup> )                                                             | 18.15                                                                           | 17.97                                                                     |
| Crystal size (mm)                                                                 | $0.32 \times 0.08 \times 0.08$                                                  | $0.15 \times 0.15 \times 0.05$                                            |
| $T_{\min}, T_{\max}$                                                              | 0.174, 1.000                                                                    | 0.139, 1.000                                                              |
| No. of measured,<br>independent and<br>observed $[I > 2\sigma(I)]$<br>reflections | 3744, 1942, 1865                                                                | 6579, 3863, 3419                                                          |
| R <sub>int</sub>                                                                  | 0.023                                                                           | 0.036                                                                     |
| θ values (°)                                                                      | $\theta_{max} = 29.4, \ \theta_{min} = 3.9$                                     | $\theta_{\rm max} = 29.6,  \theta_{\rm min} = 3.3$                        |
| $(\sin \theta / \lambda)_{max} (Å^{-1})$                                          | 0.691                                                                           | 0.694                                                                     |
| Range of <i>h</i> , <i>k</i> , <i>l</i>                                           | $-10 \le h \le 9, -22 \le k \le 21,$<br>$-11 \le l \le 18$                      | $-8 \le h \le 10, -11 \le k \le 12, \\ -15 \le l \le 15$                  |
| $R[F^2 > 2\sigma(F^2)],$<br>wR(F^2), S                                            | 0.032, 0.076, 1.06                                                              | 0.042, 0.089, 1.03                                                        |
| No. of reflections, parameters, restraints                                        | 1942, 88 , 48                                                                   | 3863, 145, 0                                                              |
| H-atom treatment                                                                  | H-atom parameters not defined                                                   | H-atom parameters constrained                                             |
|                                                                                   | $w = 1/[\sigma^2(F_o^2) + (0.0384P)^2 + 8.281P]$ where $P = (F_o^2 + 2F_c^2)/3$ | $w = 1/[\sigma^2(F_o^2) + (0.0375P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$           | 2.84, -2.45                                                                     | 2.83, -4.08                                                               |

Computer programs: *CrysAlis PRO* 1.171.38.41 (Rigaku OD, 2015), *SHELXS2014* (Sheldrick, 2014), *SHELXL2014* (Sheldrick, 2014), ShelXle (Hübschle, 2011), CIFTAB-2014 (Sheldrick, 2014).



Figure 1S. Powder XRD for the pure phase of 1 (black) shown in comparison with the reference pattern simulated from single crystal x-ray data for this compound (red)

#### Counts



Figure 2S. Powder XRD for the pure phase of 2 (black) shown in comparison with the reference pattern simulated from single crystal x-ray data for this compound (red)



Figure 3S. Powder XRD for the pure phase of 3 (black) shown in comparison with the reference pattern simulated from single crystal x-ray data for this compound (red)

Counts



Figure 4S. Powder XRD for the pure phase of 4 (black) shown in comparison with the reference pattern simulated from single crystal x-ray data for this compound (red)





Figure 5S. Powder XRD for the pure phase of 5 (black) shown in comparison with the reference pattern simulated from single crystal x-ray data for this compound (red)

Counts



Figure 6S. Powder XRD for the pure phase of 6 (black) shown in comparison with the reference pattern simulated from single crystal x-ray data for this compound (red)

# Diffuse reflectance spectra



Figure 7S. Diffuse reflectance spectrum (above) and dependence of (hvKM)<sup>2</sup> (below) on the incident radiation energy for 1



Figure 8S. Diffuse reflectance spectrum (above) and dependence of (hvKM)<sup>2</sup> (below) on the incident radiation energy for 2



Figure 9S. Diffuse reflectance spectrum (above) and dependence of (hvKM)<sup>2</sup> (below) on the incident radiation energy for **3** 



Figure 10S. Diffuse reflectance spectrum (above) and dependence of (hvKM)<sup>2</sup> (below) on the incident radiation energy for 4



Figure 11S. Diffuse reflectance spectrum (above) and dependence of (hvKM)<sup>2</sup> (below) on the incident radiation energy for 5



**Figure 12S.** Diffuse reflectance spectrum (above) and dependence of (hvKM)<sup>2</sup> (below) on the incident radiation energy for **6** 



**Figure 13S.** XRD patterns for as-deposited thin film of **1** and annealed at 100°C for 10 minutes compared to the reference pattern simulated from the single-crystal x-ray data for **1**.



**Figure 14S.** XRD patterns for as-deposited film of **3** and annealed at 100°C for 10 minutes compared to the reference pattern simulated from the single-crystal x-ray data for **3**.



**Figure 15S.** XRD patterns for as-deposited film of **5** and annealed at 100°C for 10 minutes compared to the reference pattern simulated from the single-crystal x-ray data for **5**.



**Figure 16S**. Evolution of the XRD patterns of thin film of **3** as a function of the annealing temperature. The reference XRD pattern simulated the single-crystal x-ray data for this compound is given for comparison.



**Figure 17S.** Evolution of the XRD pattern of thin film of **5** induced by thermal annealing. Experimental XRD profile of Bil<sub>3</sub> and the pattern simulated from single-crystal x-ray data for **5** are given for comparison.



b)

a)



Figure 18S. TGA curves for N-MePy[ $Bi_3I_{10}$ ] 1 (a) and N-MePy[ $Bi_2I_3$ ] 2 (b)



b)

a)



Figure 19S. TGA curves for N-EtPy[ $Bi_3I_{10}$ ] 3 (a) and N-EtPy[ $Bi_2I_3$ ] 4 (b).



b)

a)



Figure 20S. TGA curves for N-methyl quinolinium[BiI<sub>4</sub>] 5 (a) and N-methyl isoquinolinium[BiI<sub>4</sub>] 6 (b)



**Figure 21S.** Evolution of the absorption spectra of thin film of MA<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> during continuous thermal annealing at 65-70 °C showing its rapid decomposition within less than 150 h.

# Top/ down **Cross-section** b) c) d)



**Figure 22S.** Top-view and cross-sectional SEM images of **1** (a, b), **3** (c, d), **5** (e, f) and **6** (g, h) films deposited on conductive  $FTO/TiO_2$  substrates



**Figure 23S.** Phase (left), surface topography (middle) and surface potential (right) images of **1** (a, b, c), **3** (d, e, f), **5** (g, h, i) and **6** (j, k, l) films deposited on conductive  $FTO/TiO_2$  substrates



**Figure 24S.** Experimental 2D GIXRD profile of thin film of **1** (a) and orientation of the Bi-I molecular frameworks with respect to the horizontal substrate (b)



Figure 25S. Experimental 2D GIXRD profile of thin film of 3 (a) and orientation of the Bi-I molecular frameworks with respect to the horizontal substrate (b)

b



**Figure 26S.** Experimental 2D GIXRD profile of thin film of **5** showing reflexes of crystalline domains with horizontal (red color) and vertical (blue color) orientation of Bi-I chains (a). Projections of unit cells with the horizontal (left) and vertical (right) orientations of the Bi-I molecular frameworks with respect to the horizontal substrate (b).



**Figure 27S.** A schematic layout of the lateral device with thin film of **3** (a). Current–voltage characteristics of the lateral diodes with the photoactive films of **3** measured in dark and under illumination (violet laser,  $\lambda$ =405 nm, 70 mW/cm<sup>2</sup>) in the forward (solid lines) and reverse (dashed lines) directions (b). Light-induced switching of the devices at the bias voltage of 100V (c).



**Figure 28S.** Current–voltage characteristics of the lateral diodes with the photoactive films of fullerene  $C_{60}$  (100 nm) measured in dark and under illumination (violet laser,  $\lambda$ =405 nm, 70 mW/cm<sup>2</sup>) in the forward (solid lines) and reverse (dashed lines) directions



Figure 29S. Evolution of the absorption spectra of 3+I<sub>2</sub> films under thermal annealing



**Figure 30S.** XRD patterns of **3** and **3**+**I**<sub>2</sub> systems; the reference pattern for **3** simulated from x-ray single crystal data is shown for comparison