SUPPLEMENTARY INFORMATION

Compaction of a zirconium metal-organic framework (UiO-66) for high density hydrogen storage applications

Sonwabo E. Bambalaza^{a,b}, Henrietta W. Langmi^{a*}, Robert Mokaya^c, Nicholas M. Musyoka^a, Jianwei Ren^{a,d}, Lindiwe E. Khotseng^b

^aHySA Infrastructure Centre of Competence, Energy Centre, Council for Scientific and Industrial Research (CSIR), PO Box 395, Pretoria 0001, South Africa.

^bFaculty of Natural Science, University of the Western Cape, Bellville, Cape Town 7535, South Africa.

^cSchool of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.

^dMechanical Engineering Science Department, University of Johannesburg, Johannesburg, South Africa.

*Corresponding e-mail: hlangmi@csir.co.za (H. W. Langmi)

Content:

Figure S1: SEM image of UiO-66 powder before compaction.

Figure S2: Thermal decomposition of UiO-66 showing multi-step decomposition from 25 up to 1000 °C under air flow.

Figure S3: N_2 adsorption isotherms and pore size distribution (insert) for powdered and compacted UiO-66 crystals degassed at 80 °C and 200 °C for 32 hours under vacuum (~ 10^{-7} bar).

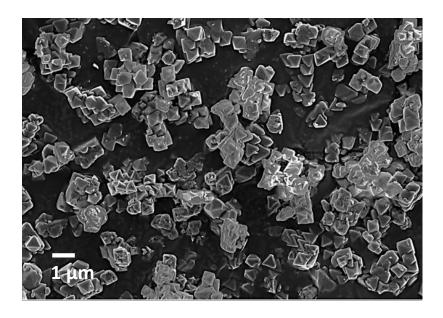
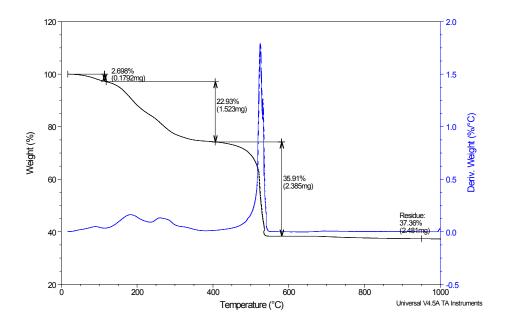
Figure S4: Pore size distribution for powdered and compacted UiO-66 in the macropore region.

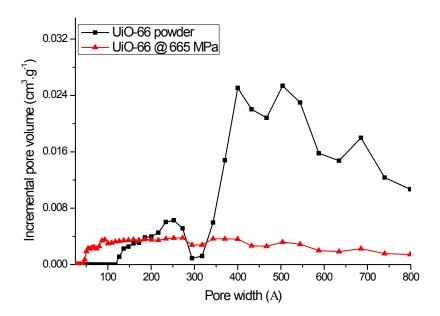
Figure S5: Excess gravimetric H_2 uptake (wt%) for compacted (i.e., pellet) UiO-66 up to 100 bar measured at 77 K showing both adsorption and desorption isotherms. The isotherms show that the uptake of H_2 is reversible.

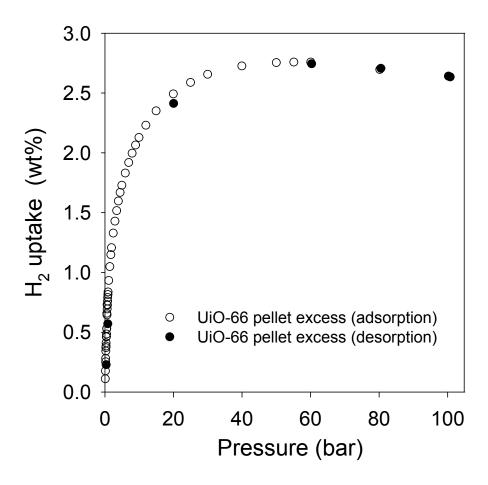
Figure S6: Adsorbed H₂ volume fractions (V_{ad}/V_{bulk}) for UiO-66 powder, UiO-66 pellet, and for an empty cylinder obtained at 77 K up to 100 bar, calculated from the ideal gas law of H₂ gas (PV = nRT).

Table S1: Comparison of textural properties for UiO-66 powder and compacted samples degassed at 80 and 200 °C for 32 hours.

Table S2: Textural properties, packing density, and H₂ uptake (at 77.3 K and 25 bar or 298 K for values in parenthesis) measured for powder and compacted UiO-66.



Figure S1: SEM image of UiO-66 powder before compaction.


Figure S2: Thermal decomposition of UiO-66 showing multi-step decomposition from 25 up to 1000 °C under air flow.

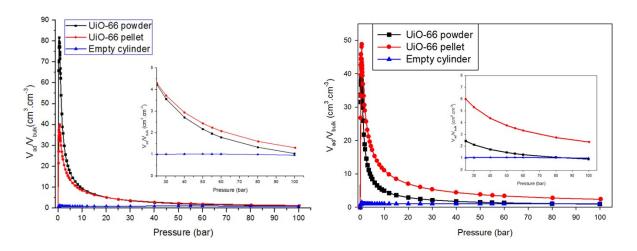

Figure S3: N_2 adsorption isotherms and pore size distribution (insert) for powdered and compacted UiO-66 crystals degassed at 80 °C and 200 °C for 32 hours under vacuum (~ 10^{-7} bar).

Figure S4: Pore size distribution for powdered and compacted UiO-66 in the macropore region.

Figure S5: Excess gravimetric H_2 uptake (wt%) for compacted (i.e., pellet) UiO-66 up to 100 bar measured at 77 K showing both adsorption and desorption isotherms. The isotherms show that the uptake of H_2 is reversible.

Figure S6: Adsorbed H₂ volume fractions (V_{ad}/V_{bulk}) for UiO-66 powder, UiO-66 pellet, and for an empty cylinder obtained at 77 K up to 100 bar, calculated from the ideal gas law of H₂ gas (PV = nRT).

Table S1: Comparison of textural properties for UiO-66 powder and compacted samples degassed at 80 and 200 °C for 32 hours.

Sample	BET Surface area (m².g ⁻¹)	Pore volume (cm³.g-¹)	Micropore surface area (m².g¹¹)a	Micropore volume (cm ³ .g ⁻¹) ^b
UiO-66 powder (80 °C)	1737	0.96	1559 (90%)	0.60 (63%)
UiO-66 pellet (80 °C)	1707	0.81	1484 (87%)	0.57 (70%)
UiO-66 powder (200 °C)	859	0.56	671 (78%)	0.27 (48%)

^avalues in parentheses represent the percentage micropore surface area of the total BET surface area. ^bvalues in parentheses represent the percentage micropre volume of the total NLDFT pore volume.

Table S2: Textural properties, packing density, and H₂ uptake (at 77.3 K and 25 bar or 298 K for values in parenthesis) measured for powder and compacted UiO-66

Sample	Surface area ^a (m ² ·g ⁻¹)	Pore volume ^b (cm ³ ·g ⁻¹)	Packing density (g·cm ⁻³)	Volumetric surface area (m².mL-1)c	Skeletal density (g·cm ⁻³)	Gravimetric H ₂ uptake (wt%)		Volumetric H ₂ capacity (g·L ⁻¹)		
				` ,		Excess	Total	Excessd	Totale	Totalf
UiO-66	1737	0.96	0.57	990	1.65	2.6	3.4	15	19	34
Powder	(1559, 90%)	(0.60, 63%)				(0.1)	(0.3)	(1)	(2)	(2)
UiO-66	1707	0.81	1.45	2475	1.78	2.6	3.3	38	48	35
Pellet	(1484, 87%)	(0.57, 70%)				(0.1)	(0.3)	(2)	(4)	(2)

 $^{^{}a}$ Values in parenthesis are micropore surface area and percentage micropore surface area of the total surface area. b Values in parenthesis are micropore volume and percentage micropore of the total pore volume. c Surface area obtained by multiplying the packing density with the BET surface area. d Excess volumetric capacity calculated from the packing density as per equation (2). e Total volumetric capacity calculated from the packing density as per equation (3). Total volumetric d Potal volumetric capacity calculated using the single crystal (1.24 g·cm 3) and skeletal densities of UiO-66 as reported by 37