## Carbon-vacancy modified graphitic carbon nitride: enhanced CO<sub>2</sub> photocatalytic reduction performance and mechanism probing

Meng Shen<sup>a, b</sup>, Lingxia Zhang<sup>a, b</sup>\*, Min Wang<sup>a, b</sup>, Jianjian Tian<sup>a, b</sup>, Xixiong Jin<sup>a, b</sup>, Limin Guo<sup>d</sup>, Lianzhou Wang<sup>c, \*</sup>, Jianlin Shi<sup>a, b</sup>

<sup>a</sup>The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P. R. China

<sup>b</sup> Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China

<sup>c</sup> Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia

<sup>d</sup> School of Environmental Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China

\*Email: <u>zhlingxia@mail.sic.ac.cn;</u> <u>l.wang@uq.edu.au</u>



Figure S1. High resolution XPS O 1s spectra of GCN and GCN510 samples.



Figure S2-1.  $N_2$  adsorption/desorption isotherms of GCN, GCN510 and GCN-BET samples.



**Figure S2-2**. The pore-size distributions calculated from the desorption branch of GCN and GCN510 samples.



**Figure S3**. CO evolution on GCN and GCN510 photocatalysts in 4 h light ( $\lambda \ge 420$  nm) illumination.



**Figure S4**. Schematic illustration of an example of nanometer-scale holes formation in GCN510.



**Figure S5**. Optimized geometry structure for CO<sub>2</sub> adsorption on (a) GCN surface and (b) carbon-vacancy modified GCN surface, where the green, gray, yellow and red color spheres represent C, N, H and O atoms, respectively.



**Figure S6**. (a) The XRD pattern, (b) UV-Vis diffuse reflectance spectra of GCN-BET compared with GCN and GCN510 samples, (c) and (d) TEM images of GCN-BET



**Figure S7**. (a) XPS survey spectra; high resolution XPS (b) O 1s, (c) C 1s, (d) N 1s spectra of GCN-BET sample.

From the above structure characterization, we can see that GCN-BET keeps a similar basic structure with the pristine GCN sample. And from the XPS analysis we can learn that the fitted peaks in C 1s spectra do not show an obvious shift toward high binding energy. At the same time, the area fraction of N-H/N-H<sub>2</sub> in N 1s spectra of GCN-BET is a little bit higher than GCN.