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Figure S1. High resolution XPS O 1s spectra of GCN and GCN510 samples.
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Figure S2-1. N, adsorption/desorption isotherms of GCN, GCN510 and GCN-BET

samples.
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Figure S2-2. The pore-size distributions calculated from the desorption branch of GCN

and GCN510 samples.
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Figure S3. CO evolution on GCN and GCNS510 photocatalysts in 4 h light (A>420 nm)

illumination.
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Figure S4. Schematic illustration of an example of nanometer-scale holes formation in

GCNS510.



Figure S5. Optimized geometry structure for CO» adsorption on (a) GCN surface and
(b) carbon-vacancy modified GCN surface, where the green, gray, yellow and red color

spheres represent C, N, H and O atoms, respectively.
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Figure S6. (a) The XRD pattern, (b) UV-Vis diffuse reflectance spectra of GCN-BET

compared with GCN and GCN510 samples, (c) and (d) TEM images of GCN-BET
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Figure S7. (a) XPS survey spectra; high resolution XPS (b) O Is, (¢) C 1s, (d) N 1s

spectra of GCN-BET sample.

From the above structure characterization, we can see that GCN-BET keeps a similar

basic structure with the pristine GCN sample. And from the XPS analysis we can learn

that the fitted peaks in C 1s spectra do not show an obvious shift toward high binding

energy. At the same time, the area fraction of N-H/N-H in N 1s spectra of GCN-BET

is a little bit higher than GCN.



