Enhanced water oxidation reaction kinetics on BiVO₄ photoanode by the surface modification with Ni₄O₄ cubane

Bin Gao^a, Tao Wang^{a,*}, Xiaoli Fan^a, Hao Gong^a, Peng Li^a, Yaya Feng^a,

Xianli Huang^a, Jianping He,^{a,*} Jinhua Ye^{b,*}

^a College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China.

^b International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

*Corresponding authors:

Prof. Tao Wang, Tel: +86 25 52112900; Fax: +86 25 52112626, E-mail:

wangtao0729@nuaa.edu.cn;

Prof. Jianping He, Tel: +86 25 52112900; Fax: +86 25 52112626, E-mail: jianph@nuaa.edu.cn;

Prof. Jinhua Ye, Tel: +81 29 8592646; Fax: +81 29 8604958, E-mail:

Jinhua.YE@nims.go.jp.

Fig. S1. XRD of Ni₄O₄/BiVO₄ and BiVO₄ photoanodes.

Fig. S2. High-resolution spectrum of Ni 2p (a) and O 1s (b) of Ni(OH)₂.

Fig. S3. High-resolution spectrum of O 1s of Ni₄O₄/BiVO₄ photoanode after fired.

Fig. S4. UV-vis spectra (a) and tauc plots (b) of BiVO₄ and Ni₄O₄/BiVO₄.

Fig. S5. (a) LSV of NiOOH modified BiVO₄ photoanodes with different deposition time; (b) LSV of Ni₄O₄/BiVO₄ and NiOOH/BiVO₄. Depositional condition: three-electrode system, 0.1 M NiSO₄ solution with pH adjusted to 7 by NaOH and a bias voltage of 1 V (vs. SCE)

Fig. S6. LSV curves of $Ni_4O_4/BiVO_4$ in phosphate buffer electrolyte (pH=7) with 80 μ M bpy and without bpy.

Fig. S7. XPS survey spectrum (a) and high- resolution spectra of Ni 2p (b), O 1s (c) of Ni₄O₄/BiVO₄ before and after testing.

Fig. S8. The SEM image of $\rm Ni_4O_4/BiVO_4$ photoanode after tested.

Fig. S9. The TEM and HRTEM images of Al₂O₃/BiVO₄ (a, c) and Ni₄O₄/Al₂O₃/BiVO₄ (b, d) nanoplate.

Fig. S10. The TEM image of $BiVO_4$ crystal.

Fig. S11. XPS survey spectrum (a) and high resolution Al 2p (b) and O 2p (c) XPS spectra of $Al_2O_3/BiVO_4$ photoanode.

Fig. S12. UV-vis spectra (a) and tauc plots (b) of Al₂O₃/BiVO₄.

Fig. S13. FTIR of BiVO₄ and Al₂O₃/BiVO₄.

Fig. S14. ICP of Ni₄O₄/BiVO₄ and Ni₄O₄/Al₂O₃/BiVO₄.

Fig. S15. The LSV curves of BiVO₄ and Al₂O₃/BiVO₄ (a) and Ni₄O₄/BiVO₄ and Ni₄O₄/Al₂O₃/BiVO₄ (b).

Fig. S16. Mott-schottky plots of BiVO₄ and Al₂O₃/BiVO₄ photoanode.

Fig. S17. (a) LSV and (b) UV-vis spetra of $Ni_4O_4/Al_2O_3/BiVO_4$, $Ni_4O_4/BiVO_4$ -d-1 and

Ni₄O₄/BiVO₄-d-2.

Fig. S18. The SEM image of $\rm Ni_4O_4/Al_2O_3/BiVO_4$ photoanode after tested.

Fig. S19. I-t curve of $Ni_4O_4/BiVO_4$ and $Ni_4O_4/Al_2O_3/BiVO_4$ photoanodes for 6 h.

Photoanode	Light source	Electrolyte	Onset potential with cocatalyst (V)	Onset potential without cocatalyst (V)	Photocurrent density with cocatalyst (mA/cm ⁻² , 1.23 VRHE)	Photocurrent density without cocatalyst (mA/cm ⁻² , 1.23 VRHE)	Ref.
Ni4O4/BiVO4	AM	0.5 M KPi*	0.35	0.7	3.9	1.5	This
FeOOH/NiOOH /BiVO4	AM 1.5G	(pH=7) 0.5 M KPi (pH=7)	0.23	0.43	4.2	1.8	1
NiO/CoO _x /BiV O ₄	AM 1.5G	0.1 M KPi (pH=7)	0.35	0.55†	3.5	1.05†	2
CoFe-H/BiVO ₄	AM 1.5G	0.5 M KPi (pH=7)	0.23	0.68	2.48	0.78	3
β-FeOOH/BiVO 4	AM 1.5G	0.2 M Na2SO4	0.45†	0.65†	4.3	1.45†	4
NiB/BiVO4	AM 1.5G	0.5 M KB** (pH=9.2)	0.25	0.35	3.47	1.56	5
Co3O4/BiVO4	AM 1.5G	1 M KB (pH=9.5)	055	Unconspic uous	2.71	0.71	6
CoPi/BiVO ₄	365 nm LEDs (AM 1.5G)	0.1 M KPi (pH=6.7)	0.5	0.9	2	0.9	7

Table S1. Summary of the water oxidation properties of high performing OER catalysts for $BiVO_4$ based photoanodes.

* KPi: Potassium phosphate buffer

** KB: Potassium borate buffer

† Estimated from figures in reference, unless denoted otherwise

	O_2 evolution rate (µmol h^{-1})	Photocurrent density (mA cm ⁻²)	Faradaic efficiency (%)
Actual	31.2	3.34	96.3
Theoretical	32.4	3.47	100

Tab. S2. Calculated and measured gas evolution rates obtained from Fig. 8 (data during the first hour).

References

- [1] T. W. Kim, K. S. Choi, Science, 2014, 45, 990-994.
- M. Zhong, T. Hisatomi, Y. Kuang, J. Zhao, M. Liu, A. Lwase, Q. Jia, H. Nishiyama, T. Minegishi,
 M. Nakabayashi, N. Shibata, R. Nishiro, C. Katayama. H. Shibano, M. Katayama, A. Kudo, T.
 Yamada, K. Domen, J. Am. Chem. Soc., 2015, 137, 5053-5060.
- [3] W. Liu, H. Liu, L. Dang, H. Zhang, X. Wu, B. Yang, Z. Li, X. Zhang, L. Lei, S. Jin, Adv. Funct. Mater., 2017, 27, 1603904.
- [4] B. Zhang, L. Wang, Y. Zhang, Y. Ding, Y. Bi, Angew. Chem. Int. Edit., 2018, 57, 2248-2252.
- [5] K. Dang, X. Chang, T. Wang, J. Gong, Nanoscale, 2017, 9, 16133-16137.
- [6] X. Chang, T. Wang, P. Zhang, J. Zhang. A. Li, J. Gong, J. Am. Chem. Soc., 2015, 137, 8356-8359.
- [7] Y. Ma, A. Kafizas, S. R. Pendlebury, F. L. Formal, J. R. Durrant, Adv. Funct. Mater., 2016, 26, 4951-4960.