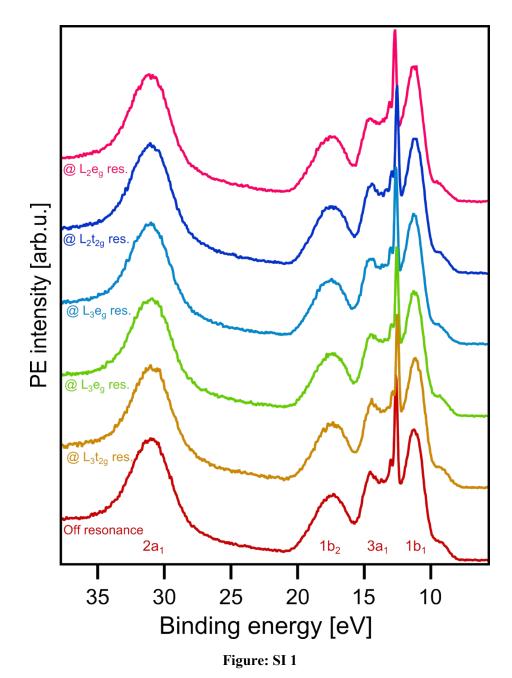
Supplementary Information

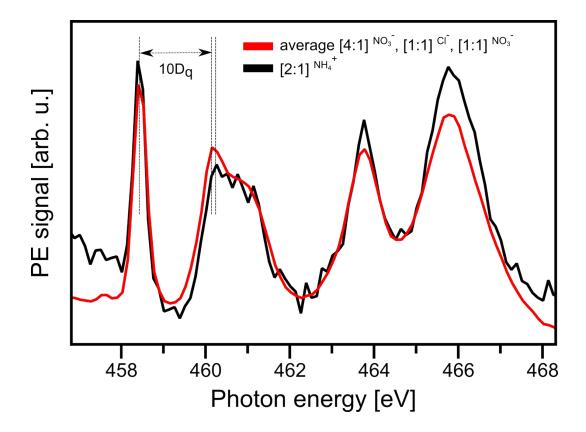
Electronic Structure of Aqueous-Phase Anatase Titanium Dioxide Nanoparticles Probed by Liquid Jet Photoelectron Spectroscopy

Hebatallah Ali, 1,2 Robert Seidel, 3,4 Arno Bergmann, 3,# and Bernd Winter 1,*

¹ Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Molecular Physics, Faradayweg
4-6, D-14195 Berlin, Germany


² Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany

³ Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, D-12489 Berlin, Germany


⁴ Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, D-12489 Berlin, Germany

[#] Present address: Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Interface Science, Faradayweg 4-6, D-14195 Berlin, Germany

^{*} Corresponding author: winter@fhi-berlin.mpg.de

Figure SI-1 Valence band photoelectron spectra measured at off-resonance and on-resonance (A, B, C and D in Figure 1) photon energies for the $[2:1]^{NH4+}$ sample. The off-resonance spectrum was measured at 457 eV photon energy, while the on-resonance spectra were recorded at marked peaks in Figure 1: A (L₃t_{2g}), B (L₃e_g at two positions due to the sub-splitting), C (L₂t_{2g}) and D (L₂e_g). All spectra are almost identical, exhibiting no signal from Ti³⁺.

Figure SI-2 Ti L-edge PEY-XA spectrum in black from anatase TiO_2 NPs $[2:1]^{NH4+}$ sample in comparison with an average spectrum of the TiO_2 NPs $[4:1]^{NO3-}$, $[1:1]^{Cl-}$ and $[1:1]^{NO3-}$ solutions shown in Figure 1. The $10D_q$ splitting is indicated by dashed lines.