Supporting information

Ultrathin CoFe-layered double hydroxide nanosheets embedded in high conductance Cu₃N nanowire arrays with 3D core-shell architecture for ultrahigh capacitance supercapacitor

Xing Zhou, Xiaohui Li, Dejian Chen, Danyang Zhao and Xintang Huang*

Institute of Nanoscience and Nanotechnology, College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China

* Corresponding author. E-mail: xthuang@mail.ccnu.edu.cn

Fig. S1 SEM image of single $Cu(OH)_2$ nanowire with the length about 10 μ m.

Fig. S2 SEM images of $Cu_3N@CoFe-LDH$ core-shell NWAs synthesized with various LDH electrodeposition time: (a) 25 s, (b) 50 s, (c) 100 s, (d) 200 s, respectively.

Fig. S3 EDX spectra of the Cu₃N@CoFe-LDH NWAs.

Fig. S4 (a) XRD spectra of CuO NWAs suported on Cu foam substrate; (b) Typical Cu 2p XPS spectra of the Cu₃N@CoFe-LDH NWAs

Table S1. Co	omparison of	f the electro	ochemical	performance	of Cu ₃ N@CoFe-
LDH NWAs e	electrode in th	nree-electroo	le systems	with other pre	viously reported
electrodes.					

Materials	Specific capacitance	Current density	Electrolyte	Retention-cycles	$\Delta V(V)$	Reference (year)
CuO@CoFe-LDH core-shell structures	0.866 F cm ⁻²	1 mA cm ⁻¹	1 M KOH	92.4%-1000	0.45	S1 (2016)
CuCo ₂ O ₄ @Co(OH) ₂ core-shell structures	424 F g ⁻¹	0.5 Ag^{-1}	1 М КОН	85.8%-10000	0.4	S2 (2017)
NiO@CoFe-LDH core-shell structures	361 C g ⁻¹	1 A g ⁻¹	2 М КОН	19.1% - 5000	0.5	S3 (2017)
NiCo ₂ O ₄ @MnO ₂ core-shell structures	2.05 F cm ⁻²	10 mA cm ⁻²	1 M LiOH	88% - 2000	0.6	S4 (2013)
Co ₃ O ₄ @NiO core-shell structures	1.35 F cm ⁻²	$6 \mathrm{mA cm}^{-2}$	2 М КОН	95.1% - 6000	0.55	S5 (2012)
Co _x Ni _{1-x} DHs@NiCo ₂ O ₄ core-shell structures	1.64 F cm ⁻²	2 mA cm ⁻²	1 М КОН	81.3% - 2000	0.55	S6 (2013)
Cu ₃ N@CoFe-LDH core-shell structures	3.08 F cm ⁻²	1 mA cm^2	2 М КОН	93.9% - 10000	0.45	The work

Fig. S5 (a) CVs curves at a scan rate of 5 mV s⁻¹ and (b) the corresponding GCD curves at 1 mA cm⁻² for the Cu₃N@CoFe-LDH (LDH deposition time: 0, 25, 50, and 100 s) in 2 M KOH solution.

Fig. S6 CVs curves for the pristine CuO (a) and Cu₃N (b) NWAs in 2 M KOH solution at various scan rates; (c,d) The corresponding GCD curves for the two samples at various current densities.

Fig. S7 GCD results of the last 20 cycles for Cu₃N@CoFe-LDH in 10000 cycles.

Fig. S8 SEM image (a) and XRD spectrum (b) of $Cu_3N@CoFe-LDH NWAs$ electrode after 10000 cycles

Fig. S9 CVs curves for the AC electrode (a) at various scan rates and The corresponding GCD curves (b) at various current densities in 2 M KOH solution.

Fig. S10 Charging current density differences $(\Delta j = j_a - j_c)$ plotted against scan rates of Cu₃N@CoFe-LDH NWAs electrode. The linear slope is equivalent to twice of the double-layer capacitance C_{dl}.

Fig. S11 CV curves at different scan rates (1, 2, 3, 4 and 5 mV s⁻¹) in a potential window where no Faradaic processes occur (0.25 - 0.35 V vs. Ag/AgCl) for $Cu_3N@CoFe-LDH NWAs$ electrode.⁵⁷

References

S1 Z. H. Li, M. F. Shao, L. Zhou, R. K. Zhang, C. Zhang, J. B. Han, M. Wei, D. G. Evans and X. Duan, *Nano Energy*, 2016, **20**, 294.

S2 Y. Zhang, H. Liu, M. Huang, J. M. Zhang, W. Zhang, F. Dong and Y. X.

Zhang, Chemelectrochem, 2017, 4, 721.

S3 K. Y. Ma, F. Liu, M. B. Zhang, X. B. Zhang and J. P. Cheng, *Electrochimica Acta*, 2017, **225**, 425.

S4 L. Yu, G. Q. Zhang, C. Z. Yuan and X. W. (D.) Lou, *Chem. Commun.*, 2013, **49**, 137.

S5 X. H. Xia, J. P. Tu, Y. Q. Zhang, X. L. Wang, C. D. Gu, X. B. Zhao and H. J. Fan, *ACS Nano*, 2012, **6**, 5531.

S6 L. Huang, D. C. Chen, Y. Ding, S. Feng, Z. L. Wang and M. L. Liu, *Nano Lett.*, 2013, **13**, 3135.

S7 X. T. Han, C. Yu, J. Yang, C. T. Zhao, H. W. Huang, Z. B. Liu, P. M. Ajayan and J. S. Qiu, *Adv. Mater. Interfaces*, 2016, **3**, 1500782