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Figure S1 (a) XRD pattern of binary NiFe-Prussian blue analogues (denoted NiFe-

PBAs), (b) SEM image of NiFe-PBAs  

 

The XRD pattern of NiFe-PBAs showed a set of diffraction peaks, corresponding 

to (200), (220), (400), (420), (422), (440), (660) and (620) planes for PBAs (JCPDS no. 

20-0915) (Figure S1a), indicating the successful synthesis of PBAs.  

 

 

 

Figure S2 (a) 1H and (b) 13C NMR spectra of liquid sulfur-modified-polyacrylonitrile 

(denoted LSPAN).   



 

The molecular structure of as-synthesized LSPAN was investigated by NMR 

spectra. The 1H spectrum of LSPAN displayed a set of peaks, in well accordance with 

structure of LSPAN (Figure S2a). Based on the ration of different peaks, the degree of 

polymerization (DP) for LSPAN was calculated to be 1 and 2. In the case of 13C NMR 

spectrum for LSPAN, obvious peaks for C≡N carbons (~120 ppm) and C-H carbons 

(i.e. a, b, c and d peaks ranging from 20 to 60 ppm) can be found in Figure S2b, further 

confirming the successful synthesis of LSPAN with low DP (i.e. 1 and 2).       

 

 

 

 

 

Figure S3 Optical image of as-synthesized LSPAN with low DP (i.e. 1 and 2) 

 

 

 



 

 

 

Figure S4 (a) SEM and (b) TEM images of NiFe-PBAs/LSPAN hybrid precursors.  

 

 

 

 

 

Figure S5 (a) SEM and (b) TEM images of N, S-doped carbon network-immobilized 

large pentlandites (i.e. Ni4Fe5S8) nanoparticles (denoted NSC/Ni4Fe5S8-1000). The 

NSC/Ni4Fe5S8-1000 was synthesized through pyrolysis of NiFe-PBAs/LSPAN hybrid 

precursors at 1000 oC under argon atmosphere.    

 

 



 

 

 

Figure S6 XRD patterns of NSC/Ni4Fe4S8-1000 and P-NSC/Ni4Fe4S8-1000. The P-

NSC/Ni4Fe4S8-1000 was synthesized by acid etching of NSC/Ni4Fe4S8-1000.   

 

 

Figure S7 (a) N2 adsorption-desorption isotherms of P-NSC/Ni4Fe5S8-1000 (with 

porous structure) at 77 K, (b) corresponding pore distribution of P-NSC/Ni4Fe5S8-1000 

determined by the method of density functional theory. 



 

 

 

 

Figure S8 TEM images of P-NSC/Ni4Fe5S8-1000 sample after further acid etching in 

1 M H2SO4 solution at 100 oC for 24 h. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure S9 XPS spectrum of (a) Ni 2p, (b) Fe 2p, (c) S 2p, (d) N 1s, (e) distribution of 

different N species (i.e. pyridinic-N, pyrrolic-N, and graphitic-N) based on (d), and (f) 

C 1s for P-NSC/Ni4Fe4S8-1000 (with porous structure). 

 

 



 

 

 

Figure S10 Steady-state polarization curves of P-NSC/Ni4Fe5S8-1000 and commercial 

RuO2 electrocatalysts for OER in 1 M KOH. 

 

 

 

 

 

 

 

 

 

 



 

Figure S11 (a) TEM and (b) HRTEM images of P-NSC/Ni4Fe4S8-1000 after 10000 

times of potential cycles between 1.2 and 1.9 V (vs RHE). XPS spectra of (c) Ni 2p, (d) 

Fe 2p, (e) S 2p, (f) N 1s and (g) C 1s for P-NSC/Ni4Fe4S9-1000 after 10000 times of 

potential cycles.   



 

 

 

Figure S12 CV curves for (a) NSC/Ni4Fe4S8-1000 (without porous structure) and (b) 

P-NSC/Ni4Fe4S8-1000 (with porous structure) at different rates (i.e. 0.04, 0.06, 0.08, 

0.10, 0.12, and 0.14 V/s). 

 

 

 

Figure S13 Plots of TOF for NSC/Ni4Fe4S8-1000 and P-NSC/Ni4Fe4S8-1000 against 

different potentials. 

 



 

 

 

Figure S14 Structure scheme of H6Fe4Ni4S6(H2O)8
2+ clusters determined by 

computational modeling. Lavender, orange, yellow, white, and red represent Fe, Ni, S, 

H, and O atoms, respectively. 

 

 

 

 

Figure S15 Reaction process of OER in acid media. 

 

 

 



 

 

 

Figure S16 Atomic configurations for OER intermediates on Fe sites of 

H6Fe4Ni4S6(H2O)8
2+ clusters. Lavender, orange, yellow, white, and red represent Fe, Ni, 

S, H, and O atoms, respectively. 

 

 

 

 

 

 

Figure S17 Atomic configurations for OER intermediates on Ni sites of 

H6Fe4Ni4S6(H2O)8
2+ clusters. Lavender, orange, yellow, white, and red represent Fe, Ni, 

S, H, and O atoms, respectively. 

 

 



 

 

 

Figure S18 Atomic configurations for OER intermediates on pyridinic-N, S doped 

carbon (denoted pyridinic-N, S-C). Black, yellow, blue, red, and white represent to C, 

S, N, O, and H atoms, respectively. 

 

 

 

 

Figure S19 Steady-state polarization curves of P-NSC/Ni4Fe5S8-1000 with and without 

addition of 0.01 M KSCN aqueous solution. 

 



 

 

Figure S20 XPS spectra of survey for P-NSC/Ni4Fe5S8-900 and P-NSC/Ni4Fe5S8-1100 

samples (900 and 1100 refer to the pyrolysis temperature). Both samples were 

synthesized through same procedure as P-NSC/Ni4Fe5S8 except that the pyrolysis 

temperature changed to 900 and 1100 oC, respectively.  

 

 

Table S1 Elemental compositions of P-NSC/Ni4Fe5S8-900 and P-NSC/Ni4Fe5S8-1100 

catalysts determined by XPS 

Catalysts C 

(at%) 

N 

(at%) 

Ni 

(at%) 

Fe 

(at%) 

S 

(at%) 

O 

(at%) 

P-NSC/Ni4Fe5S8-

900 

64.05 2.67 2.43 1.19 5.00 24.66 

P-NSC/Ni4Fe5S8-

1100 

64.83 1.08 1.55 1.31 3.58 27.65 

 



 

 

Figure S21 XPS spectra of N 1s for (a) P-NSC/Ni4Fe5S8-900 and (b) P-NSC/Ni4Fe5S8-

1100. 

 

 

 

Figure S22 Distribution of pyridinic-N, pyrrolic-N, and graphitic-N determined by 

XPS for P-NSC/Ni4Fe5S8-900 and P-NSC/Ni4Fe5S8-1100.   

 



 

 

Figure S23 Steady-state polarization curves of P-NSC/Ni4Fe5S8-900, P-NSC/Ni4Fe5S8-

1000, and P-NSC/Ni4Fe5S8-1100 for OER in 0.5 M H2SO4. 

 

 



 

Figure S24 (a) TEM images of P-NSC/Ni4Fe5S8-900, (b) corresponding size 

distribution of Ni4Fe5S8 nanoparticles based on (a); (c) TEM images of P-

NSC/Ni4Fe5S8-1100, (d) corresponding size distribution of Ni4Fe5S8 nanoparticles 

based on (c). 

 

 

 

 

 

 

 



 

 

Figure S25 N2 adsorption-desorption isotherms of P-NSC/Ni4Fe5S8-900, P-

NSC/Ni4Fe5S8-1000, and P-NSC/Ni4Fe5S8-1100 at 77 K. 

 

To further examine the important role of pyridinic-N, S doped carbon for acid OER, 

we also prepared P-NSC/Ni4Fe5S8-900 and P-NSC/Ni4Fe5S8-1100 (900 and 1100 refer 

to the pyrolysis temperature) (see Experiment Section). With the pyrolysis temperature 

increase from 900 to 1100 oC, the N contents decreased sharply from 2.67 to 1.08 at%, 

accompanying with the ratio of pyridinic-N to sum N decreasing from 0.37 to 0.30. 

(Figure S20-21, and Table S1). This means that there are much more pyridinic-N 

species on the P-NSC/Ni4Fe5S8-900, compared with that of P-NSC/Ni4Fe5S8-900. 

Furthermore, the content of S elements in the P-NSC/Ni4Fe5S8-900 is 5.00 at%, higher 

than that on the P-NSC/Ni4Fe5S8-1100 (3.58 at%). Given the high content of pyridinic 

N and S species in the P-NSC/Ni4Fe5S8-900, it can be concluded that there are more 



pyridinic-N, S-doped carbon in the P-NSC/Ni4Fe5S8-900 than that in the P-

NSC/Ni4Fe5S8-1100. The OER performance of P-NSC/Ni4Fe5S8-900 and P-

NSC/Ni4Fe5S8-1100 was then tested in 0.5 M H2SO4. (Figure S22) With the higher 

pyridinic-N, S-doped carbon contents, the P-NSC/Ni4Fe5S8-900 displayed higher OER 

activity than that of P-NSC/Ni4Fe5S8-1100, suggesting the essential role of pyridinic-

N, S-doped carbon for OER. Nevertheless, the OER activity of P-NSC/Ni4Fe5S8-900 is 

still lower than that of P-NSC/Ni4Fe5S8-1000, further confirming the high activity of P-

NSC/Ni4Fe5S8-1000 for OER. 

On the other hand, as displayed in Figure S24, the Ni4Fe5S8 nanoparticles in all of 

the P-NSC/Ni4Fe5S8 samples (i.e. P-NSC/Ni4Fe5S8-900, P-NSC/Ni4Fe5S8-1000, and P-

NSC/Ni4Fe5S8-1100) were in size of ~3.0 nm, indicating that the pyrolysis temperature 

had little impact on the size of resulting Ni4Fe5S8 nanoparticles. Moreover, the P-

NSC/Ni4Fe5S8-900, and P-NSC/Ni4Fe5S8-1100 displayed the similar isotherm curves 

as that of P-NSC/Ni4Fe5S8-1100. (Figure S25) And, all the P-NSC/Ni4Fe5S8-900, P-

NSC/Ni4Fe5S8-1000, and P-NSC/Ni4Fe5S8-1100 possessed nearly the same BET 

surface area of ~400 cm2 g-1. Therefore, the different acid OER performance 

demonstrated on P-NSC/Ni4Fe5S8-900, P-NSC/Ni4Fe5S8-1000, and P-NSC/Ni4Fe5S8-

1100 may not be related to the particle size of Ni4Fe5S8 and surface area. In other words, 

the different OER performance is solely resulted from the different content of pyridinic-

N, S-doped carbon. 

 

 



 

 

 

Figure S26 Steady-state polarization profiles of P-NSC/Ni4Fe5S8-1000 for OER at 

different scan rates in 0.5 M H2SO4. 

 

 

  To investigate the mass transport of acid OER process, the polarization profiles 

of P-NSC/Ni4Fe5S8-1000 for OER at different scan rates (i.e. 1, 2, 5 mV s-1) were 

recorded. (Figure S26) With the scan rates increasing from 1 to 5 mV s-1, only tiny 

change of polarization curves can be observed on P-NSC/Ni4Fe5S8-1000 electrocatalyst, 

implying the fast mass transport during OER.[1] 

 

 

 

 



 

 

Figure S27 Raman spectrum of P-NSC/Ni4Fe5S8-1000 electrocatalyst. 

 

As shown in Figure S27, the Raman spectrum of P-NSC/Ni4Fe5S8-1000 

electrocatalyst displayed two main peaks at 1348 and 1574 cm-1, corresponding to the 

D and G band of carbon, respectively.[2] The relative low intensity ratio of ID/IG (0.81) 

and the obvious 2D peak (2700 cm-1) of carbon signified the carbon network on the P-

NSC/Ni4Fe5S8-1000 electrocatalyst possessed high graphitization.[3]  
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