Supporting Information

A railway-like network electrode design for room temperature Na-S battery

Tingting Yang,^a Wei Gao,^a Bingshu Guo,^a Renming Zhan,^a Qiuju Xu,^a Hong He,^a Shujuan Bao,^a Xiaoyan Li,^b Yuming Chen,^{*c} and Maowen Xu^{*a}

^aInstitute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China.

^bDepartment of Applied Physics and Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China.

^cDepartment of Nuclear Science and Engineering, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

*Corresponding author:

E-mail: xumaowen@swu.edu.cn; yumingc@mit.edu.

Supplementary Figures

Fig. S1. Formation mechanism of S@CNT/NPC composite.

Fig. S2. FESEM images of ZIF-8 (a) and NPC (b).

Fig. S3. FESEM images (a-b) of CNT/ZIF-8.

Fig. S4. FESEM images (a-c) of CNT/ZIF-8 with different content of CNTs.

Fig. S5. Thermogravimetric analysis (TGA) under oxygen atmosphere.

Fig. S6. XRD patterns of the ZIF-8, NPC and S@NPC composite.

Fig. S7. FESEM elemental mapping images of C (b), S (c), and N (d) of S@CNT/NPC composite.

Fig. S8. Raman spectrum patterns of pure S.

Fig. S9. Thermogravimetric analysis (TGA) of S@CNT/NPC composite and S under nitrogen

atmosphere.

Fig. S10. XPS survey spectrum of CNT/NPC composite.

Fig. S11. XPS results of survey (a) and N 1s spectrum (b) of S@CNT/NPC composite after cycling.

Fig. S12. N₂ adsorption-desorption isotherms and the pore size distributions (a,b) of CNT/ZIF-8.

Fig. S13. N₂ adsorption-desorption isotherms and the pore size distributions (a,b) of NPC.

Sample name	BET area (m² g⁻¹)	Pore volume (cm ³ g ⁻¹)
CNT/ZIF-8	959	0.487
CNT/NPC	2480	1.011
S@CNT/NPC	20	0.101

Fig. S14. Comparison of BET performance between CNT/ZIF-8, CNT/NPC and S@CNT/NPC

composite.

Fig. S15. (a) Thermogravimetric analysis (TGA) and (b) Discharge–charge curves at 0.5C of S@CNT/NPC composite electrode with 43% sulfur.

Fig. S16. Nyquist plots of the S@CNT/NPC composite electrodes before and after cycling.

Fig. S17. Discharge-charge cycling performance of CNT/NPC composite electrode at 0.5C.

Fig. S18. TGA curve of the S@NPC composite under N_2 atmosphere (a), CV curves of the S@NPC

composite (b).

Fig. S19. FESEM images of S@CNT/NPC after cycles.

Fig. S20. Comparison of decay rate per cycle for S@CNT/NPC composite with references.